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1

conceptual background

No other episode in the history of Western science has been as consequential 
as the rise of the mathematical approach to the natu ral world, both in terms 
of its impact on the development of science during the scientifi c revolution 
but also in regard to the debates that it has generated among scholars who 
have striven to understand the history and nature of science. In his recent 
summary of this “mathematization thesis,” Michael Mahoney recounts the 
stunningly quick ascendancy of the mathematization of nature, a mere two- 
hundred- year span that witnessed the overthrow of the Aristotle- inspired 
Scholastic approach to the relationship between mathe matics and natu ral 
philosophy that had held sway up through the fi rst half of the Re nais sance: 
“For although astronomy had always been deemed a mathematical science, 
few in the early sixteenth  century would have envisioned a reduction of 
physics— that is, of nature as motion and change—to mathe matics” (1998, 
702). Yet, by the end of the seventeenth  century this radical change in approach 
had become dominant. In this introduction, we fi rst summarize and explore 
some of the main conceptual issues crucial to the mathematization of nature 
during the scientifi c revolution. Th e mathematization thesis signifi es above all 
the transformation of scientifi c concepts and methods, especially  those con-
cerning the nature of  matter, space, and time, through the introduction of 
mathematical (or geometrical) techniques and ideas (Yoder 1989). We next 
analyze the prominence of mathematization as a historiographical framework 
within scholarship of the scientifi c revolution, especially in the twentieth 
 century. Fi nally, we explain how the contributions to this volume explore, 
challenge, and reshape  these conceptual and historiographical perspectives.

introduction

geoffr ey gor h a m,  ben ja mi n hill , 
a n d edwa r d slow ik
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Th e ideal of mathematization has ancient roots (Bochner 1966). Indeed, 
as we  will see in the next section, modern historiography has emphasized 
the revival of Platonism in the seventeenth  century’s drive to mathematize. 
Th e remnants of Plato’s own Pythagoreanism are evident in the Republic, 
where he advocates an a priori astronomy insofar as the vis i ble motions in 
the sky “fall short of the true ones— motions that are  really fast or slow as 
mea sured in true numbers, that trace out true geometrical fi gures, that are 
all in relation to one another” (529d1-5; 1997, 1145–46). So Socrates urges: 
“let’s study astronomy by means of prob lems, as we do geometry, and leave 
the  things in the sky alone” (530b6- c1; 1146). And in the Timaeus Plato de-
velops an elaborate geometrical cosmology and  matter theory, guided by 
the conviction that the creator, in order to produce the best and most in-
telligible world, would produce a “symphony of proportion” (32c2; 1237). 
 Aft er Plato, Archimedes’s program of mathematization in the sciences of 
hydrostatics and mechanics provided a model for Galileo and  others 
(Clagett 1964).

Controversy about the value and limits of mathematization also goes 
back to the beginnings of philosophy. In Aristotle’s view, Pythagoras and 
Plato excessively confl ated the abstract realm of mathe matics with the con-
crete realm of nature: “the minute accuracy of mathe matics is not to be 
demanded in all cases, but only in the case of  things which have no  matter. 
Hence its method is not that of natu ral science” (995a15–18; 1984, 2:1572). 
So Aristotle concludes that the student of nature should not simply assume 
that  matter and motion  will conform to mathematical princi ples. Neverthe-
less, in his own Physics, he acknowledges the importance of “the more phys-
ical of the branches of mathe matics, such as optics, harmonics, and 
astronomy” (194a8; 1984, 1:311). And in the methodological treatise Poste-
rior Analytics he indicates that such sciences are subject to geometrical (e.g., 
mechanics and optics) or arithmetical (e.g., harmonics) demonstration 
(76a1, 21–25; 1984, 1:123) even though their subject  matter is empirical: “it 
is for the empirical scientist to know the fact, and for the mathematicians to 
know the reason why” (78b32-3; 1984, 1:128). Aristotle assumed that the 
theorems of such sciences must be “subordinate” to the theorems of their 
corresponding mathematical sciences, since he prohibited demonstrations 
that crossed subject- genera (75b3-20; 1984, 1:122). Th is way of conceiving the 
“mixed sciences,” as they came to be known, gained additional infl uence 
through the pseudo- Aristotelian treatise on mechanics, whose prob lems in-
volving wheels, pulleys, and levers  were routinely treated geometrically by 
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phi los o phers through the sixteenth  century, including Galileo (Bertoloni 
Meli 2006). Indeed, arithmetic, geometry, astronomy, and  music— already 
identifi ed as peculiarly mathematical by Plato (Republic Bk 7; 525a–31d; 
1997, 1141–47)— were formally and pedagogically grouped together in the 
classical “quadrivium.” Consequently, the idea that mathe matics could be 
used to directly represent physical phenomena remained an open and 
contested question through the ancient and medieval periods. In the sev-
enteenth  century, the main foci of the ongoing debate can be grouped  under 
three broad conceptual categories: instrumentalism versus realism, types of 
mathematization, and social context.

Instrumentalism versus Realism

Two impor tant sources of skepticism about mathematization can be 
traced to the Aristotelian strictures mentioned previously, one metaphysi-
cal and one methodological. First, it was claimed that  matter did not con-
form to the exactness of mathe matics, and second, that the deductive 
structure of mathematical demonstration was inadequate to capture the 
causal relationships among natu ral bodies. Hence, outside of the classical 
“mixed sciences” of optics, mechanics, and astronomy, the utility of mathe-
matics for understanding nature was severely limited. Based on  these con-
cerns, an instrumentalist tradition arose that provided a negative answer to 
the question, do mathematical objects and their relationships correspond to 
natu ral objects and their relationships? Instrumentalism regards the math-
ematical component of physical theories, for example, the epicycle- deferent 
system of Ptolemaic astronomy, as a mere calculating device for predicting 
phenomena (Machamer 1976). And this outlook remained infl uential 
through the beginning of the early modern period. It is expressed in Osian-
der’s preface to Copernicus’s De Revolutionibus (1543), which stipulates 
that since the astronomer “cannot in any way attain to the true  causes, he 
 will adopt what ever suppositions enable the motions to be computed cor-
rectly from the princi ples of geometry . . .   these hypotheses need not be 
true nor even probable” (1978, xvi).

Yet, during the sixteenth and seventeenth centuries the mathematical 
constructions employed in the new Copernican theory of astronomy began 
to be accepted by many as providing knowledge of the  actual relationships 
among celestial bodies. Th us, Kepler and Galileo urged that the aim of as-
tronomy was physical truth, not merely to “save the phenomena” via math-
ematical models (Jardine 1979). And the same realist attitude was extended 
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to the new mathematical work in optics and mechanics. Besides the increase 
in successful mathematically based approaches, such as Simon Stevin’s work 
on statics and Galileo’s account of  free fall, the main catalyst for the increas-
ing popularity of a realist conception of the link between mathe matics and 
the physical world was almost certainly the rise of the mechanical concep-
tion of natu ral philosophy. By proposing that natu ral phenomena could be 
explained by means of machine models, the mathematical relationships that 
characterize the operation and part- whole relationships of the models of-
fered an obvious and intuitive basis for positing  those same mathematical 
relationships in the natu ral phenomena themselves. Th e growing apprecia-
tion of the success of mathematical techniques in explaining natu ral phe-
nomena, combined with the rise of the mechanical philosophy and its realist 
conception of a hidden world of interacting material particles that have geo-
metrical shapes and volumes, thus encouraged a realist conception of the 
relation between mathe matics and physical real ity. As John Henry put it, the 
“Scientifi c Revolution saw the replacement of a predominantly instrumental-
ist attitude to scientifi c analy sis with a more realist outlook” (2008, 8). Gali-
leo’s famous declaration that the book of nature “is written in the language of 
mathe matics, and its characters are triangles, circles, and other geometric 
fi gures” (1957, 238–39)— thus turned Osiander’s preface on its head: it was 
precisely  because nature itself was geometrical that mathematical physics 
had to be true.

Types of Mathematization

Galileo’s “book of nature” comment also reveals the type of mathe-
matics that informed much of his work on natu ral philosophy: geometry, 
the same approach used by ancient and medieval natu ral phi los o phers in 
the mixed mathe matics tradition. At the start of the seventeenth  century, 
geometry could thus lay claim as the most impor tant branch of mathe-
matics for investigating the physical world, especially given the historical 
pre ce dent of the parallel structure between the synthetic or axiomatic con-
ception of geometry developed in Euclid’s Ele ments and the deductive 
methodology of Aristotelian- based Scholastic science. Th at is to say, axiom-
atic geometry derives theorems and other elaborate geometric results from 
a starting point consisting of basic defi nitions and concepts, and is thus a 
pro cess that strongly resembles the logical structure of Aristotelian/Scho-
lastic science whose explanatory methodology includes basic metaphysical 
postulates— “fi rst princi ples”—as premises, and then goes on to produce 
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specifi c scientifi c explanations of vari ous phenomena from that basis (Poste-
rior Analytics; 71b9-78a28; 1984, 1:115–25). Descartes, for example, declared 
in a 1638 letter to Mersenne that “all my physics are nothing but geometry” 
(AT 2 268), while Spinoza extended the more geometrico into metaphysics 
and ethics. Newton’s Principia would constitute one of the last signifi cant 
examples of this geometrical treatment of physics. A host of mathematical 
tools would be developed in the seventeenth  century that would ultimately 
transform the acceptable standards of mathematization. While the trigo-
nometric relations embodied in the Snell- Descartes law of refraction and 
Huygens’s work on harmonic oscillators can be seen as the beginning of this 
change, the infi nitesimal analy sis that lay at the heart of the new calculus’s 
treatment of transcendental curves would mark the most impor tant chal-
lenge to the hegemony of the older geometric approach (Mahoney 1998).

Th e rapid development and increasing usefulness of analytic techniques 
in mechanics provided a power ful justifi cation for their introduction, no 
 matter how unintuitive or problematic  these techniques may have seemed 
in comparison with the methods derived from classical geometry (Gauk-
roger 2010). Specifi cally, the debate about  whether geometry should be sup-
plemented by novel algebraic formalisms and techniques reverberated 
throughout the seventeenth  century (Jesseph 1999), culminating in the op-
position between Newton’s fl uxional version of the diff erential calculus and 
the analytical formulation of Leibniz. In this sense, the geometrical charac-
ter of mathe matics that had helped to usher in the scientifi c revolution, 
which itself was inspired by the newer mechanical philosophy and ancient 
geometry, could be seen as limiting the development of mathematization. 
Defenders of what we might call “geometric fundamentalism,” including 
Hobbes and Barrow, pointed to the superior intelligibility of geometric proof 
and to the manifest applicability of geometry to space, time, and  matter. De-
fenders of the new algebraic methods, the so- called mathematical plural-
ists, pointed to their fl exibility and power and to their utility in representing 
continuous magnitudes, irregular curves, the infi nite and infi nitesimals, 
instantaneous velocity, and so on (Mancosu 1996). Th is is just one example 
of the way detailed historical scrutiny has recently complicated and enriched 
the  grand narrative of mathematization.

Wholesale mathematization included the aim of extending the mathe-
matical, specifi cally the geometrical, model of demonstration or method 
throughout the sciences. In mechanics and other areas of natu ral philosophy, 
the aspirational link with mathe matics is evident in the many laws of 
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nature, collision rules, and other quantifi ed relationships among material 
phenomena that  were posited by natu ral phi los o phers, such as Descartes’ 
groundbreaking law for the conservation of “quantity of motion” (the prod-
uct of size and speed; AT 8A 61-2). Given a mathematical formulation,  these 
natu ral laws could thus be seen as acquiring the same level of necessity and 
certainty accorded to mathe matics as a  whole. But the attempts to extend the 
mathematization of vari ous hypotheses in natu ral philosophy to the method 
of natu ral philosophy itself was never fully realized, despite the obvious suc-
cess of the former venture by the end of the  century. Galileo entitled his last 
major treatise the Discourses and Mathematical Demonstrations Concerning 
the Two New Sciences (1638). But Feyerabend and  others have noted that this 
work and the Dialogues rely on a mix of strict demonstration, probabilistic 
arguments, and rhe toric (Feyerabend 2010; Jardine 1979). Hobbes modeled 
strictly philosophical method on geometry, but acknowledged the necessity 
of a hy po thet i cal approach in physics (EW 1 387-8). Descartes hoped his 
physical princi ples would be accorded the “absolute certainty” of mathe-
matics but seemed to concede they may possess only “moral certainty” (AT 
8A 327). Moreover, although Descartes’ physics aims for mathematical cer-
tainty, its content is remarkably  free of mathe matics, even granting the pre-
ce dent set by his laws of nature. Th is split between the mathematization of 
nature vs. method is perhaps most evident in Spinoza: he hews to the more 
geometrico in the ser vice of a metaphysical program that is quite unfriendly 
to mathematization (Schliesser 2014).

Furthermore, while certainty and demonstration  were widely heralded, 
 there was also considerable variation among the standards of proof and evi-
dence. Even if mathematical demonstrations delivered certainty, many 
commentators, especially Aristotelians, denied that they provided substan-
tive (i.e., causal) knowledge of natu ral pro cesses (Mancosu 1996). Th e math-
ematical model of demonstration was not practiced by Bacon and his 
followers for a slightly diff  er ent reason, however: they urged the investiga-
tion of nature through detailed, immediate “experiments” and the system-
atic collection of facts or “natu ral histories” (however, see chapter 2 in this 
volume).

A revival of ‘atomistic’ conceptions of nature in the early modern period 
also encouraged the mathematization trend. Conceiving of nature as dis-
crete, rather than continuous as the Scholastics had typically done, atom-
ism rendered mathematical methods that do not rely on geometric continuity 
more palatable to natu ral phi los o phers. Likewise, the mechanical concep-
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tion of nature could be seen as helping to sanction the methods of analy-
sis  because, just as a machine can be viewed as the sum of its parts so the 
prob lem posed by an algebraic equation can be similarly resolved by ex-
amination and manipulation of its constituent components. Consequently, 
at the beginning of the eigh teenth  century, the art of analy sis, exemplifi ed 
by Pierre Varignon’s refashioning of Newton’s mechanics into the symbolic 
algebra of Leibniz’s calculus, pointed to the  future of nature’s mathemati-
zation. Still, the mathematization of nature proceeded on many fronts, 
prompted by, and in turn stimulating, developments in fi elds besides 
 mechanics and optics. Astronomy, for example, benefi ted from the intro-
duction of logarithms, while Fermat and Pascal’s investigations of gambling 
laid the foundations for probability theory, which would eventually have 
far- reaching applications in the sciences. Fi nally, the emphasis on experi-
mentation and observation that gradually developed in the seventeenth 
 century would usher in a growing reliance on quantifi cation and mea sure-
ment. Unlike the ‘qualitative’ approach to the sciences practiced by the 
Scholastics, the scientifi c revolution marked the transition to the quantita-
tive outlook that underlies modern science (Roux 2010; Gingras 2001).

Social Context

Th e transformation of the content of mathe matics in the seventeenth 
 century mirrored the changing landscape of the social practices and insti-
tutions associated with mathe matics. Th e growing power of Europe—in com-
merce, navigation, and technology among many other areas— was greatly 
facilitated by mathematical developments and applications. As the demand 
for mathematically profi cient engineers and craft smen  rose, so their pres-
tige and power in society increased. And with their increasing social and 
po liti cal infl uence, the authority and value of mathe matics in society grew 
in proportion. Th e change was most evident in the universities, where 
mathematicians held an inferior status in comparison to natu ral phi los o-
phers at the beginning of the scientifi c revolution. Yet, by the end of the 
seventeenth  century, many mathematicians and engineers had elevated 
their positions within the acad emy. As mathematical prac ti tion ers gained 
status, their knowledge claims garnered intellectual authority. At the same 
time, mathe matics— previously denigrated by the intellectual elite as the 
purview of mere calculators, engineers, and merchants— won enhanced 
status through its increasing association with traditional physics and natu-
ral philosophy (Feingold 1984). As Biagioli has shown, Galileo himself was 
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an early and rare example of a mathematician who was able to cross this 
disciplinary boundary and gain the title (and status) of “phi los o pher” (1989, 
49; see also 1994).1

Th e eff orts of the Medici court in promoting Galileo to the more es-
teemed rank of phi los o pher typifi es this transition in the standing of 
mathematicians, a change in no small part explained by the progressively 
expanding importance placed on mathematical expertise for a host of social 
proj ects of wealthy patrons, courts, and institutions. Th e cata logue of  these 
new or improving craft  traditions is extensive; besides the more established 
mechanical arts of statics, hydrostatics, and kinematics, the practice of civil 
engineering (e.g., surveying, canal construction, and architecture), naviga-
tion, and military construction (e.g., artillery, fortifi cations)  were greatly ad-
vanced by the development of mathematical techniques (Dear 1995). For 
instance, Galileo’s use of geometric methods in his study of parabolic tra-
jectories laid the groundwork for modern ballistics (Hall 1952). Th e arts 
 were also deeply aff ected by the advance of mathe matics, a trend begun in 
the Re nais sance and exemplifi ed in the use of perspective in painting. Leo-
nardo da Vinci and Albrecht Dürer, whose work extended into the sixteenth 
 century,  were not only  great artists but also skilled mathematicians and en-
gineers. Many of the artists of the early modern period  were inspired by the 
conviction that the essence of nature is mathematical; hence, the artistic 
content of their work, as well as the techniques used to produce  those works, 
paralleled the rise of mathe matics in the other craft  traditions in society 
(Peterson 2011).

historiography of mathematization

Th e historiographical thesis that the scientifi c revolution, and by implication 
modern science as a  whole, is guided by the proj ect of mathematization has 
a long and controversial history of its own. In the preface to Metaphysical 
Foundations of Natu ral Science (1786), Kant asserts that “in any special doc-
trine of nature  there is only as much proper science as  there is mathe matics 
therein” (2004, 6). It is the mathematical structure of science, as epitomized 
by Newtonian mechanics for Kant, that renders its fundamental laws neces-
sary and a priori. Th e criterion of mathematization also explains why chem-
istry and psy chol ogy are not genuine sciences for Kant, the former  because 
its princi ples are merely empirical and the latter  because mathe matics can-
not be applied to the laws of inner sense.2 So, already in Kant’s infl uential 
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reconstruction of modern science, mathematization serves the epistemic au-
thority of certain sciences while marginalizing  others. William Whewell, in 
Philosophy of the Inductive Sciences (1840), evinces a more ambivalent atti-
tude. He acknowledges “how impor tant an offi  ce in promoting the pro gress 
of the physical sciences belongs to mathe matics,” especially  those sciences 
concerned with space, time, and motion (astronomy, optics, and mechan-
ics). But Whewell also emphasizes “other ideas quite as necessary to the pro-
gress of exact and real knowledge as an acquaintance with arithmetic and 
geometry,” especially cause, force, and substance (in sciences such as dy-
namics and chemistry) (1967, 1:156). More critically, in Th e Crisis of Eu ro-
pean Sciences and Transcendental Phenomenology (1936), Husserl claims that 
with Galileo we “observe the way in which geometry, taken over with the 
sort of naiveté that keeps  every normal geometrical proj ect in motion, de-
termines Galileo’s thinking and guides it to the idea of physics” (1970, 29). 
From a very diff  er ent perspective, Joseph Needham opens the third volume 
of his monumental Science and Civilization in China by observing, “since 
mathe matics and the mathematization of hypotheses has been the back-
bone of modern science, it seems proper that this subject should precede all 
 others in our attempt to evaluate China’s contributions” (1959, 1). Over 
several hundred years, and across a diverse range of scholarly perspectives, 
the assumption has been widely shared that, for better or worse, modern 
science and mathe matics are inextricably linked.

Responsibility for the continuing prominence of mathematization his-
toriography belongs to a trio of early twentieth- century historians, each 
born in 1892 but hailing from diff  er ent countries. All three emphasized the 
increasingly mathematical treatment of prob lems that had long challenged 
Aristotelian natu ral phi los o phers of the  middle ages: the planetary orbits, 
 free fall, collision, and optical phenomena. Each emphasized the debt of 
modern mathematizers like Kepler and Galileo to ancient precursors, espe-
cially Plato, Aristarchus, and Archimedes. But their respective attitudes to 
mathematization are fl avored by distinctive philosophical and normative 
presuppositions. In Th e Metaphysical Foundations of Modern Physical Sciences 
(1924), the American phi los o pher E. A. Burtt was particularly concerned 
with the implications of mathematization for “man’s place in the world.” Th e 
primary- secondary distinction of Galileo, as well as the rigid mind– body 
dualism of Descartes, are both portrayed as consequences of  wholesale 
mathematization in science. Th e former denigrates  human subjectivity: “in 
the course of translating this distinction of primary and secondary into 
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terms suited to the new mathematical interpretation of nature, we have the 
fi rst stage in the reading of man quite out of the real” (1924, 89). Th e latter 
relegates the mind to an obscure, isolated position within the brain: “the 
universe of the mind, including all experienced qualities that are not math-
ematically reducible comes to be pictured as locked up . . .  away from the in-
de pen dent, extended realm in a petty series of locations inside of  human 
bodies” (Burtt 1924, 123). For Burtt, then, mathematization is instrumental 
in the disenchantment of the world that was feared by some early, yet cau-
tious, supporters of the new philosophy like the Cambridge Platonists. So 
we might say that Burtt was preoccupied with the existential implications of 
mathematization.

Alexandre Koyré is undoubtedly the historian most responsible for the 
twentieth- century embrace of the mathematization thesis. Koyré (1978) 
traced seventeenth- century mathematization to the infl uence of Plato (and 
Re nais sance Platonism), especially in the case of Galileo who “argues for the 
superiority of Platonist mathematicism over abstract empiricism” (37). Gal-
ileo’s Platonism is particularly evident for Koyré in his attitude  toward the 
use of idealization and approximation in science. Not only was Galileo a 
skilled deviser of “thought experiments,” even the experiments he actually 
carried out oft en required “mathematical license” or idealization about the 
hardness of surfaces, the sphericality of balls, and the parallel orientation of 
gravitational lines of force, and so on. In Dialogues Concerning the Two Chief 
World Systems, the Aristotelian Simplicio quips that “mathematical subtle-
ties do very well in the abstract, but they do not work out when applied to 
sensible and physical  matters” (Galileo 2001, 236). According to Koyré, 
Galileo’s response was in eff ect that “the real and the material are homoge-
neous and that a geometrical fi gure can exist in a material form” (1978, 
204).3 Like Burtt, Koyré sees mathematization as key to a fundamental shift  
in man’s conception of the universe. But unlike Burtt he is less concerned 
with man’s place in the world than the world’s place in the universe. In From 
the Closed World to the Infi nite Universe (Koyré 1957), modern science, par-
ticularly through the work of Copernicus, Kepler, and Galileo, replaces the 
qualitative, closed, and fi nite cosmos of Christianized Aristotelianism 
with a purely quantitative, open, and infi nite universe. Integral to this pro-
cess is what Koyré calls the “geometrization of space”: “the substitution of 
homogeneous and abstract— however now considered as real— dimension 
space of the Euclidean geometry for the concrete and diff erentiated place- 
continuum of pre- Galilean physics and astronomy” (1968, 6–7). Space and 
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time are no longer framed in relation to privileged places (like the center of 
the earth) and events (like creation ex nihilo) but rather homogenized and 
extended infi nitely in all directions. With the geometrization of cosmic 
space- time,  matter and motion  were also mathematized.4  Matter, now as-
sumed identical in the terrestrial and celestial spheres, becomes  either pure 
res extensa, as in Descartes, or corpuscular, as in Boyle and Newton. Fi-
nally, motion and rest are conceived as equally real and are represented 
geometrically as curves and trajectories or symbolically as algebraic formu-
las. So we might say that Koyré is preoccupied with the cosmological side of 
mathematization.

Fi nally E. J. Dijksterhuis’s 1961 Th e Mechanization of the World Picture, 
originally published in Dutch in 1950, off ered in certain re spects a corrective 
to the already infl uential writings of Koyré. For example, whereas Koyré held 
that revolution or “relative discontinuity” was typical of scientifi c change—
a thesis  later strengthened by Th omas Kuhn— Dijksterhuis held that “the” 
scientifi c revolution of the seventeenth  century was unique in the severity of 
the conceptual rupture it involved. But he agreed that the revolutionary in-
novation of seventeenth- century science consisted precisely in “mathemati-
zation” (a near slogan in Dijksterhuis’s writings): “the treatment of natu ral 
phenomena in words had to be abandoned in  favor of mathematical formu-
lation of the relation observed between them. In the pres ent  century, func-
tional thinking with its essential mathematical mode of expression has not 
only been maintained, but has even come to dominate science” (1961, 501).

Dijksterhuis closely linked mathematization with the other major inno-
vation commonly associated with the scientifi c revolution: mechanization. 
Th e pristine “mechanical philosophy” of Descartes conceived the functioning 
of natu ral pro cesses by analogy with  simple machines: levers, pulleys, and 
wheels. But such analogies could not provide an irreducible role for “force” 
and “attraction,” which increasingly fi gured in analyses of impact,  free fall, 
and projectile motion. “Even the most skilled mechanic,” Dijksterhuis ob-
served, “is unable to construct apparatuses in which material objects move 
in consequence of their mutual gravitation” (1961, 497). On Dijksterhuis’s 
analy sis, such concepts began to be associated with purely “functional” 
(i.e., mathematical) relationships rather than mechanical interactions in 
the traditional analogies.5 Once mathematized, mechanics freed itself from 
intuitive metaphysical constraints, like no action at a distance, no velocity 
at an instant, and so on, that had confounded the early mechanical phi-
losophy: “the science called mechanics had emancipated itself in the 
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seventeenth  century from its origin in the study of machines, and had 
developed an in de pen dent branch of mathematical physics dealing 
with the motion of material objects” (1961, 498). And so the heretofore 
“mixed” or “subordinate” science of mechanics, when fi  nally given a rig-
orous mathematical formulation by Newton and his followers, became 
identifi ed with the ancient Aristotelian science of physics itself. So we 
might say that Dijksterhuis is preoccupied with the mechanical side of 
mathematization.

Th e mathematization thesis was criticized for its emphasis on physics 
and astronomy at the expense of biology and medicine, and for its neglect of 
impor tant natu ral phi los o phers like Bacon and Boyle. Th is led to a revised 
“two traditions” model of early modern science. According to Th omas 
Kuhn’s infl uential version of the model, the “classical” tradition includes the 
familiar “mixed sciences” and, beginning in the  fourteenth  century, the 
science of local motion. Th is tradition— mathematical, rationalistic, and 
abstract— was practiced by Kepler, Galileo, and Descartes. Th e newer “Ba-
conian” tradition, comprising sciences like chemistry, magnetism, and early 
electrical theory, was experimental, empiricist, and concrete. Given this 
methodological split, the Baconian approach had  little impact on the rapid 
advance of sciences like astronomy and optics in the seventeenth  century: 
“For a person schooled to fi nd geometry in nature, a few relatively accessible 
and mostly qualitative observations  were suffi  cient to confi rm and elaborate 
theory” (Kuhn 1977, 38). Conversely, mathematization came to the Baco-
nian sciences of chemistry and electricity much  later than the classical 
sciences. Seen in this light, the “two traditions” historiography did not 
challenge, but rather confi rmed, the dominant narrative of mathematiza-
tion, privileging traditional physical sciences while reinforcing the concep-
tion of the chemical and life sciences as immature “fact- gathering.” Th is is 
refl ected in the historiography of the eminent scholar Richard Westfall. Em-
phasizing metaphysics, rather than methodology, his version of the two tra-
ditions thesis contrasts the “Pythagorean- Platonic” tradition, “which looked 
on nature in geometric terms, convinced that the cosmos was constructed 
according to princi ples of mathematical order,” and the “mechanical philos-
ophy,” “which conceived of nature as a huge machine and sought to explain 
the hidden mechanism  behind the phenomena” (Westfall 1978, 1). While 
acknowledging the “combined infl uence” of the two approaches, Westfall 
generally portrays the mechanical philosophy as “an obstacle to the full 
mathematization of nature” (42) that was eventually achieved by Newton 
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(cf. Guicciardini 2009). In a relatively recent article, Westfall asserts that 
“the geometrization of nature is perhaps our most distinctive legacy from 
the scientifi c revolution,” noting that it came fi rst in physics but  later spread 
to chemistry and molecular biology to such an extent that “to be a scientist 
 today it is necessary to understand and do mathe matics” (1990, 59).

In recent years, the mathematization thesis has been subject to varied 
criticism and analy sis. From the perspective of the sociology of scientifi c 
knowledge, writers have explored the social and disciplinary implications 
of the increasing prestige of mathe matics. Yves Gingras, for instance, docu-
ments how the mathematization of physics served to isolate emerging fi elds 
like “rational mechanics” and magnetism from public discussion (and hence 
criticism). Mathematization “had the eff ect of excluding actors from legiti-
mately participating in the discourses on natu ral philosophy” (Gingras 
2001, 385), thereby galvanizing the professional status of the new science. 
As Steven Shapin has discussed, such exclusion was one of Boyle’s major 
concerns about excessive mathematization. While acknowledging the “use-
fulness” of arithmetic in experiment, and the elegance of geometrical proof, 
Boyle wrote in one of his own works on hydrostatics, “I had rather geome-
tricians should not commend the shortness of my proofs than that  those 
other readers, whom I chiefl y designed to gratify, should not thoroughly 
apprehend the meaning of them” (Shapin 1994, 337).  Whether  because of, 
or despite, its exclusivity, geometry became part and parcel of physics in the 
wake of Newton’s Principia. In the “Preface to the Reader,” Newton explic itly 
uses mathematical precision to set the boundary between “rational” and 
merely “practical” mechanics: “rational mechanics  will be the sense, ex-
pressed in exact proportions and demonstrations, of the motions that result 
from any forces what ever” (1999, 382).6

Even more recently, several philosophically oriented scholars have sub-
jected the standard mathematization historiography to close scrutiny. In a 
searching critique of Koyré’s “Platonist” Galileo, Gary Hatfi eld has argued 
that Galileo’s mathematical approach (in contrast with Kepler’s and Des-
cartes’) is not guided by any metaphysical presuppositions— Platonist, Aris-
totelian, or other wise. Rather the application of geometry to nature by Galileo 
was vindicated simply by its successes, in a variety of theoretical contexts and 
experimental practices: “his achievement was to show how a mathematical 
approach to nature could be justifi ed by its successes in practice, and specifi -
cally how it might be suffi  ciently justifi ed by numerous local instances of ap-
plication” (Hatfi eld 1990, 139). Lorraine Daston has taken a parallel line 
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against Burtt, complaining that his fi xation on metaphysics— especially the 
allegedly alienating metaphysics of the mechanical philosophy— and his 
disregard of social and po liti cal context, blinded him to the im mense com-
plexity of mathematization. He therefore failed to solve the central episte-
mological prob lem why mathematization was so compelling to so many: 
“Burtt’s answer was that the new science required it, but this claim does not 
carry conviction:  there  were too many versions of the new science, with and 
without mathe matics; too many versions of mathematized nature, with and 
without the mechanical philosophy; and too many versions of why nature 
should be mathematized to warrant any straightforward connection” 
(Daston 1991, 525; see also contributions to Garber and Roux 2012). Simi-
larly, and even more recently, Sophie Roux has argued that if mathematiza-
tion involves the application of mathe matics to other fi elds of knowledge, 
 there was  little agreement in the seventeenth  century about the meaning 
and aims of such cross- disciplinary application nor even about the nature 
of mathe matics itself (2010, 324). Roux tentatively concludes, as Hatfi eld 
did, that “the  grand narrative of mathematization has to be enriched by the 
dense spectrum of vari ous mathematical practices” (327).

overview of this volume

As a historiographical thesis, mathematization has many virtues. Its longev-
ity attests to that. It is an elegant thesis, and highlights what seems to be a 
constitutive ele ment of modern scientifi c practice, providing mathemati-
cally precise and rigorous explanations of natu ral phenomena. It also ap-
pears to neatly demarcate mature from immature sciences, thereby off ering 
a framework for following the transformation of a discipline into a properly 
scientifi c one. And the thesis is strongly unifying: it unifi es individual think-
ers and disparate groups into a single movement; in other words, it prompts 
us to see how Cartesians and Newtonians, mechanists and iatrochymists, 
Galileo and Leibniz, all shared a philosophical outlook about the nature and 
aims of science. It also makes good sense of how the unifi cation of phenom-
ena was achieved during the period, such as the unifi cation of celestial and 
terrestrial movements or the mechanistic unifi cation of living and nonliv-
ing bodies, namely  under a common mathematical formulation. Further-
more, the mathematization thesis re spects the early moderns’ own claims to 
be mathematizing nature. Fi nally, it is a very  simple thesis. Th e idea of ap-
plying mathe matics to nature in order to generate scientifi c understanding 
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is as easy to formulate as it is to grasp. So it is thus not diffi  cult to appreciate 
the perennial allure of mathematization as a historical thesis.

Recent historical work and historiographical trends, however, have put 
considerable pressure on the mathematization thesis, and in many cases 
have begun to undercut its power and plausibility as a narrative of the scien-
tifi c revolution. It has always been recognized that  there  were outliers to 
the mathematization story: Gassendi and Charleton, Locke and Boyle, and 
Sydenham and La Mettrie should fi gure into the narrative of the scientifi c 
revolution, but they displayed  little real interest in mathe matics or quantita-
tive explanations of natu ral phenomena. And it has always been recognized 
that within certain domains of natu ral philosophy (medicine, biology, and 
psy chol ogy, for example) very  little mathematization was successful or even 
attempted. Although previously it may have been easier to view  these as ex-
ceptions that prove the rule, they begin to look anomalous when taken in 
conjunction with more recent trends.

More detailed and careful historical work has begun to emphasize the 
importance of experience and experiment for the early stages of the scien-
tifi c revolution as well as the central roles played by other conceptual moves 
and intellectual trends (Dobre and Nyden 2013). Th e rise of contextualist 
history of science and philosophy has also begun to highlight the many 
additional  factors propelling the scientifi c revolution, such as the impor-
tance of scholarly socie ties, the impact of the discovery of the Amer i cas, 
and sixteenth- century developments in economics and statecraft . Th e im-
portance of developments within other, more “practical” disciplines, such 
as navigation and geography, art, anatomy, and pharmacology, are also 
being identifi ed and explored. To say the least, the story of the emergence of 
modern science is much more complicated than the mathematization thesis 
generally suggests. Add to this the growing trend to deny that this emer-
gence is revolutionary, as opposed to gradual or halting, and  there seems to 
be no place for the mathematization thesis in current history of science.

Given  these historiographical trends of the last thirty years, it is time to 
undertake a systematic reevaluation and potential reconceptualization of 
mathematization as a historical thesis. Th at is the aim of this volume. In 
calling for and off ering some steps  toward a reconceptualization, we are sug-
gesting that the time is right to rethink (1) what mathematization does or 
should consist in; (2) how it squares with recent scholarship; and (3) its over-
all value as a historical framework for the emergence of science in the sev-
enteenth  century.
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As one might expect, scholarly opinion varies on such questions, and the 
chapters presented  here discuss a wide variety of issues and reconceptual-
izations. Possibilities range from the more extreme view that the mathema-
tization thesis is not only historically useless but outright misleading to the 
very conservative position that it is historically accurate and requires  little 
or no modifi cation. Between  these poles,  there are positions that seek to 
rehabilitate the thesis by recharacterizing it in alternative terms,7 limiting it 
to one of a variety of contributing  factors,8 or restricting it to par tic u lar in-
dividuals or sciences. If we could draw any generalization from this volume, 
and the current state of scholarship, it would be that the mathematization 
thesis as usually conceived is overly simplistic. While simplicity can be a vir-
tue of historical explanation, in this case it depends on excessive vagueness 
in central concepts such as “mathe matics,” “nature,” and “application.” As 
they are made more determinate, the unity imposed by the mathematiza-
tion thesis risks falling apart, and its usefulness as a  grand narrative frame-
work is compromised. As scholarship proceeds, we should expect the picture 
regarding mathematization to become even more nuanced and complicated.

In chapter 1, Carla Rita Palmerino (“Reading the Book of Nature: Th e 
Ontological and Epistemological Under pinnings of Galileo’s Mathematical 
Realism”) investigates Galileo’s reputation as the “godfather” of mathemati-
zation. She investigates how Galileo’s idealizations are part of a coherent and 
sophisticated realist ontology and epistemology of mathe matics.  According 
to Palmerino, for Galileo mathematical entities are mind- independent and 
rooted in the physical world, not unlike Barrow’s geometrized notion of 
mathe matics. But the mathematical structures of real ity are too complex to 
be properly grasped on their own, thus necessitating the simplifying analy-
ses in scientifi c models. Palmerino’s essay closes the gap between Galileo’s 
mathe matics and his realist science by establishing how he conceived of 
mathe matics in realist terms. Th is relieves the mathematization thesis of 
one of its per sis tent objections, which is that Galileo’s mathematical science 
illicitly assumed the applicability of mathe matics to nature. While it might 
be pos si ble to see Palmerino’s contribution as opening the door to a more 
sophisticated and fatal critique of the mathematization thesis, Palmerino 
herself does not invite this. A more natu ral understanding of her contri-
bution seems to be to take it as part of a larger defense of the traditional 
mathematization thesis.

Dana Jalobeanu (chapter  2, “ ‘Th e Marriage of Physics with Mathe-
matics’: Francis Bacon on Mea sure ment, Mathe matics, and the Construc-
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tion of a Mathematical Physics”) challenges the common view that Bacon is 
antagonistic to mathematization in natu ral philosophy. Jalobeanu argues, to 
the contrary, that there was an impor tant quantitative aspect to Baconian 
natu ral histories. Other scholars have discussed the importance of careful 
and precise mea sure ments within Baconian natu ral histories. But Jalobeanu 
is particularly interested in Bacon’s claim that “a good marriage of Physics 
with Mathe matics begets Practice,” in which she perceives the seeds of a 
distinctively Baconian mathematization of nature. Th e linchpin of her posi-
tion is an analy sis of Bacon’s “reductive experiments,” which  were aimed at 
reducing imperceptible powers or qualities to perceptible ones that could be 
precisely mea sured.  Th ese experiments  were then to be expanded and multi-
plied  until complete  tables of the quantities, in  every experimental confi gu-
ration, are recorded. Jalobeanu’s vision of a Baconian mathematization of 
physics suggests a relatively moderate revision of the mathematization the-
sis, making room for Bacon within the traditional narrative. A more critical 
reader, however, may view her analy sis as further evidence against any uni-
vocal notion of mathematization.

Richard T. W. Arthur’s chapter (“On the Mathematization of  Free Fall: 
Galileo, Descartes, and a History of Misconstrual”) illustrates how the math-
ematization historiography has distorted our understanding of how key 
fi gures of the scientifi c revolution strug gled with one of its central prob lems. 
Arthur focuses on one of the supposed crowning achievements of mathe-
matization, the law of  free fall, and suggests that we have anachronisti-
cally mischaracterized and misunderstood the episode and its signifi cance 
for mathematizing nature. Arthur’s analy sis centers on the concept of instan-
taneous velocity, which has been regarded as instrumental in both Galileo’s 
and Descartes’ accounts of  free fall. But this was an impossible concept for 
them, Arthur argues,  because they understood velocity as an aff ection of 
motion, which could never occur in an instant. By recognizing this anach-
ronism, we can now explain why Galileo and Descartes can seem confused 
when they are not. On the nature of mathematization, Arthur indicates that 
“the pro cess was nowhere near as smooth as it would appear” and only one 
of several  drivers of philosophical development (which he terms “epistemic 
vectors”) that si mul ta neously propel and constrain scientifi c thought. But 
Arthur’s analy sis may also suggest stronger conclusions. It undercuts the 
idea that physical space was geometrized in the way Koyré suggested, 
 because motion was not yet conceived as a continuous magnitude. But it also 
suggests that  there  really was not a univocal conception of mathe matics, 
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motion, or nature extending from Galileo and Descartes through Leibniz 
and Newton and Clarke.

Roger Ariew (chapter 4, “Th e Mathematization of Nature in Descartes 
and the First Cartesians”) provides the volume’s most vigorous and sus-
tained critique of the oversimplifi cation of the mathematization thesis. Ar-
iew concentrates on one special but impor tant question— how the Cartesians 
viewed the relationship between mathe matics and physics, especially when 
they thought they  were articulating Descartes’ own account. He shows that 
 there was no consensus about the meaning and value of mathematization 
among the Cartesians. Th ey variously held that mathe matics was a tool 
for sharpening the mind and nothing more (Du Roure and Rohault); that 
mathe matics employed the same faculty of the mind as physics but was not 
the basis for physical truth or method (Rohault); and that mathe matics and 
physics are not even relevant to one another (Le  Grand and Regis). But no-
where, Ariew emphasizes, did they embrace Descartes’ notion of a mathesis 
universalis, which fi gures so prominently in the mathematization histo-
riography. Indeed, why would they, Ariew asks, since Descartes’ Regulae was 
unknown to them? Moreover, the relations between Descartes’ own mathe-
matics and physics  were not due to the mathesis universalis, nor to the idea 
that physics was fundamentally mathe matics, but to their both being rooted 
in the metaphysics of clear and distinct ideas. Th e disparate and oft en 
negative views of mathematization among the Cartesians undermines any 
 wholesale or univocal version of the mathematization thesis. Ariew con-
cludes that mathematization might well be a “twentieth- century invention, 
perhaps a construction we are forcing on the past.”

Daniel Garber’s chapter (“Laws of Nature and the Mathe matics of Mo-
tion”) proposes a more moderate reconceptualization of the mathematiza-
tion thesis. His analy sis of laws suggests that mathematization  ought to be 
reconceived as one of many  factors motivating and animating the scientifi c 
revolution. It may seem that mathe matics and laws naturally coincide as 
mathe matics captures the necessity and universality of laws. But Garber ar-
gues that for three key fi gures in the mathematization story— Galileo, Des-
cartes, and Hobbes— the notions of law and the notions of mathematical 
repre sen ta tions of nature remained quite separate. In Descartes, the laws of 
nature are not formulated mathematically and  there is  little that is overtly 
mathematical in his natu ral philosophy as a  whole. In Galileo, mathe matics 
is everywhere, but the concept of law is missing from his physics and his 
overall scientifi c vision. And although Hobbes modeled philosophy and 
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physics on geometry and off ered impor tant inertial princi ples, he was very 
careful not to label  these statements “laws.” Garber’s analy sis challenges the 
assumption that mathematization promoted scientifi c understanding via 
laws of nature, as well as the view that mathematization helped secure 
certainty and necessity in an other wise voluntarist theological context. But 
Garber’s analy sis leaves open the possibility that the link between mathema-
tization and laws was forged  later, by Newton or Leibniz, for example, and 
that mathematization and the search for laws are parallel  factors driving the 
early scientifi c revolution (perhaps among many  others).

Yet another moderate strategy for reconceiving mathematization is de-
veloped by Douglas Jesseph (chapter 6, “Ratios, Quotients, and the Language 
of Nature”), which explores the debate between Wallis and Barrow about the 
conceptual foundations of mathe matics. According to Jesseph, the dis-
agreement between the arithmetically minded Wallis and the geometrically 
minded Barrow gives rise to diff  er ent conceptions of the mechanistic proj-
ect. Wallis embraced an arithmetic or numerical treatment by which ratios 
could be compounded and compared. Barrow, in contrast,  adopted a geo-
metrically grounded, relational analy sis of ratios, which precluded com-
pounding and numerical comparison. According to Jesseph,  these divergent 
models of ratios infl uenced their respective conceptions of the relationship 
between mechanical motions and mathe matics. For Wallis, mechanics was 
part of the mixed mathematical sciences in that it consisted of the applica-
tion of general mathe matics to motion. For Barrow, however, mechanical 
motion is geometrical  because it formed the epistemic and ontological basis 
for geometry itself. One lesson of Jesseph’s analy sis is that historians of 
mathematization must attend to the complex seventeenth- century debates 
over the foundations of mathe matics itself, particularly geometrical versus 
arithmetic constructions. On the  whole, we can discern two parallel forms of 
mathematization emerging from the Wallis- Barrow dispute. Th e arithmet-
ically based form fed into the Leibnizian calculus while the geometrically 
based form culminated in the fl uxions of Newton’s Principia.

Eileen Reeves’s chapter (“Color by Numbers: Th e Harmonious Palette in 
Early Modern Painting”) is yet another contribution suggesting that math-
ematization is not suffi  ciently unifi ed to support a  grand narrative of the 
scientifi c revolution. Reeves examines a very in ter est ing case of the failure 
of mathematization— late sixteenth-  and early seventeenth- century neo- 
Pythagorean eff orts to explain colors as varying ratios of blackness and 
whiteness. Interestingly, their neo- Pythagoreanism itself seemed to function 



20 I n troduction

as an epistemological obstacle to the development of any coherent and plau-
sible color theory. It was not  until the diff erentiation of primary and second-
ary colors in the work of François Aguilon, who was anxious to distance 
himself from neo- Pythagorean pre de ces sors, that color theory was able to 
fully develop. But, Reeves emphasizes, it was not through Aguilon’s theoreti-
cal pre sen ta tion that the theory of primary and secondary colors was able to 
spread, but rather through the work of paint ers and artists who worked with 
pigments and hues. Reeves neatly pres ents two of Diego Valázquez’s paint-
ings as visual commentaries on Aguilon’s color theory. Th e signifi cance of 
Reeves’s analy sis for the historiographical thesis of mathematization is two-
fold. Although neo- Pythagoreanism is oft en seen as part of the story of 
mathematization,  here it is presented as an epistemological obstacle inhibit-
ing the science of color theory. Furthermore, it underscores the diversity 
among domains of mathematization, since Pythagorean harmonics have 
 little to do with the geometrization of space or the Euclidean model of sci-
entifi c demonstration.  Th ere seems to be, at best, only a  family resemblance 
among practices of seventeenth- century mathematization.9

Lesley B. Cormack (chapter 8, “Th e Role of Mathematical Prac ti tion ers 
and Mathematical Practice in Developing Mathe matics as the Language of 
Nature”) pres ents additional serious prob lems for a unifi ed mathematiza-
tion doctrine. As noted earlier, a key plank in Koyré’s infl uential version of 
the mathematization thesis is the geometrization of space that supposedly 
began in the  fourteenth  century. Cormack emphasizes that, owing to the 
prominence of humanism, natu ral philosophy during the fi ft eenth and six-
teenth centuries was for the most part not mathematically oriented. Th is 
suggests that even if physical space was geometrized in the  fourteenth 
 century, this played  little role in the (alleged) mathematization of nature in 
the seventeenth  century.10 Rather than being in the hands of the natu ral phi-
los o phers or the universities, Cormack argues that mathe matics was in the 
hands of “mathematical prac ti tion ers”: paint ers, mapmakers, instrument 
designers, military con sul tants, navigators, and merchants. While it might 
seem this analy sis demands only a corrective about the timing and trans-
mission of the geometrization of space, a stronger conclusion more dam-
aging to the mathematization thesis also seems pos si ble— there was no 
geometrization of space prior to the rise of mathematical natu ral philos-
ophy. Like the Egyptians and Mesopotamians who originally developed 
geometry and arithmetic for building monuments and conducting state 
business, the sixteenth- century mathematical prac ti tion ers  were driven by 
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the practical necessities of trade, war, and fi nance. With lives and fortunes 
on the line, they had no need for a philosophical breakthrough like the ge-
ometrization of physical space.  Whether one draws the weaker or the stron-
ger conclusion from Cormack’s essay, at the very least she shows how the 
mathematization thesis needs to be augmented by including mathematical 
prac ti tion ers in the story.

Th e next three chapters examine the infl uential and complex role of the 
 great polymath Leibniz in the pro cess of mathematization. Kurt Smith 
(chapter 9, “Leibniz on Order, Harmony, and the Notion of Substance: Math-
ematizing the Science of Metaphysics and Physics”) supports a reentrenchment 
of the traditional mathematization thesis, advocating its extension into the 
realm of metaphysics, particularly within the Leibnizian tradition. Smith 
shows how Leibniz used the idea of a mathematical procedure to make sense 
of his central metaphysical notions of order and harmony. Th e primary pro-
cedure in question is Leibniz’s early version of what would become known 
as Cramer’s Rule. He argues that the fact that  there is a mathematical solu-
tion to a set of equations describing the vari ous forces at work in a substance 
suggests that Leibniz conceived of harmony and order as the convergence 
on a determinate. So Leibniz’s version of mathematization was not limited 
to his mechanics or natu ral philosophy, it aff ected even his ontology itself.

Justin E. H. Smith (chapter 10, “Leibniz’s Harlequinade: Nature, Infi n-
ity, and the Limits of Mathematization”) supports a similar restriction on 
the mathematization thesis as urged by Jesseph, but from a very diff  er ent 
perspective. He focuses on Leibniz’s reception of the iatromechanical tradi-
tion, and his biology and physiology more broadly, rather than Leibnizian 
mechanics. Th e iatromechanists, Smith emphasizes, conceived their proj ect 
as fundamentally mathematical. Leibniz embraced this conception and sup-
plemented it with his own theory of  actual infi nities. Th e notion of infi nite 
structures within natu ral bodies allowed Leibniz to extend his solution 
to the prob lem of the continuum to the physiology of living  things. Th is 
refl ected Leibniz’s ambitious hope to account for all of nature in a unifi ed, 
broadly mathematical way. Although this mathematizing proj ect was unsuc-
cessful in the end (perhaps was even doomed from the start), Smith argues 
that it should be seen as an impor tant, albeit unorthodox, part of the math-
ematization proj ect of the seventeenth  century. Like Jesseph, Smith can be 
seen as localizing the mathematization thesis, in this case to iatromecha-
nism, while calling attention to mathematization programs far from me-
chanics and astronomy. Th e vast diff erences between traditional, geometrical 
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forms of mathematization and Leibniz’s infi nity- based approach suggest 
moreover that Leibniz’s approach represented a distinct and unique form of 
mathematization.

Ursula Goldenbaum (chapter 11, “Th e Geometrical Method as a New 
Standard of Truth, Based on the Mathematization of Nature”) suggests that 
within the rationalist tradition mathematization extends into the realm 
of philosophical methodology. For her, the key is the geometrical method, 
which she views as an extension of the mathematization proj ect into philos-
ophy as a  whole. Th is method was applied globally— even, as in Spinoza, to 
 human emotions and ethics itself. Th e primary attraction of this method 
was that it promised to secure the certainty of philosophical knowledge the 
same way that mathematization promised to ground the certainty of scien-
tifi c knowledge. So as for Kurt Smith, mathematization is not so much cri-
tiqued but rather extended into the rationalist philosophy of the seventeenth 
 century.

Fi nally, Christopher Smeenk (chapter 12, “Philosophical Geometers and 
Geometrical Phi los o phers”) explores the use Newton made of Barrow’s ge-
ometrized conception of mathe matics to bridge the gap between the math-
ematically ideal and the physically real. Smeenk shows how Newton used 
Barrow’s geometrical conception of mathe matics to overcome a prima facie 
barrier to the adoption of a mathematical methodology in physics: the ten-
sion between the universality and certainty of mathe matics versus the par-
ticularity and uncertainty of real systems. According to Smeenk, Newton 
rejected the idea that mathe matics is especially abstract or ideal but held in-
stead that its proper domain of application is material objects rather than 
ideal entities. However, he did not promulgate a crude empiricist epistemol-
ogy of mathe matics in nature. Rather, he held that quantitative descriptions 
are rationally reconstructed on the basis of observations taken from within 
an appropriate conceptual framework. Like Jesseph, Smeenk’s analy sis of 
Newton’s geometrically based mathe matics suggests a way of reconceiving 
the mathematization thesis where diff  er ent models of mathematization in 
Newton, Barrow, and Wallis develop in de pen dently or even in competition. 
But Smeenk’s and Jesseph’s points can also be taken in the more restrictive 
sense, whereby the mathematization of nature is seen as a feature only of the 
 later, Newtonian and Leibnizian stage of the scientifi c revolution. In any 
case, taking their work in  either of  these directions requires a revision of the 
mathematization thesis, dethroning it as an overarching narrative of the sci-
entifi c revolution.
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Th is volume pres ents a variety of pos si ble reconceptualizations of the 
mathematization historiography. One possibility is to reject it completely as 
oversimplifi ed and misleading, both for historical and pedagogical pur-
poses. More moderate revisions are also pos si ble: mathematization might 
be one  factor of many necessary to explain the scientifi c revolution; or it may 
be of limited historical utility helpful for explaining (1) the contributions 
of specifi c individuals or schools; (2) the unfolding of par tic u lar fi elds 
within natu ral philosophy; (3) the pro gress in certain subperiods of the 
scientifi c revolution. Fi nally, certain conservative positions seek to retain 
the substance of the mathematization thesis and even extend it beyond its 
traditional scope of natu ral philosophy to philosophical concerns more 
broadly. Regardless of what the scholarly consensus turns out to be,  there is 
no doubt that the mathematization thesis has played an impor tant role in 
shaping our conceptions of the scientifi c revolution and it deserves to be 
carefully reexamined in this new era of historical methodologies and frame-
works.

abbreviations

at Descartes, R. 1976. Oeuvres de Descartes (citation by volume and page 
number)

ew Hobbes, T. 1839–45. En glish Works (citation by volume and page num-
ber)

notes

1. See also Henry (2008), chapter  2, for an overview of recent work.
Westman (1980) has urged a similar point about the emerging authority of 
astronomy in the sixteenth  century, one of the traditional mixed sciences.

2. See further Friedman (1992) and Massimi (2010).
3. Th e Platonist origin of Galileo’s geometrical approach has been force-

fully challenged by some historians. For example, Wallace (1984) has explored 
the infl uence of the Jesuit mathematicians of the Collegio Romano, especially 
Christopher Clavius, on Galileo’s early philosophy. Nevertheless Koyré’s ver-
sion of the mathematization thesis gained wide ac cep tance within mainstream 
historiography of science in the twentieth  century. Th e British historian Ru-
pert Hall, while underscoring the complexity of the scientifi c revolution, and 
the dramatic transformations within mathe matics itself, strongly reaffi  rms 
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Koyré’s thesis in numerous works, including the late Revolution in Science 
1500–1750: “Th e most eloquent and full defense of this pro cess [the mathema-
tization of nature] was given by Galileo whose mathematization of the science 
of the motions of real bodies furnished a model for physical science general 
during the following  century” (1983, 12).

4. On the geometrization of space, time,  matter, and motion, see more
recently McGuire (1983), Jalobeanu (2007), and Palmerino (2011).

5. Koyré puts the same point about gravitation in terms of Galileo’s
famous saying: “a mathematical stricture that lays down the rule of syntax 
in God’s book of nature” (1968, 13).

6. See further the recent articles by Domski (2013) and Dunlop (2013).
7. Sophie Roux suggests that it can be recast by focusing on the kinds

of mathematical practices used during the period (2010, 319–37) or in terms 
of their polemical stances  toward the Schoolmen (2013). Craig Martin 
(2014) develops this approach.

8. As H. Floris Cohen has done (2010).
9. For an incisive critique of a “ family resemblance” approach to re-

conceptualizing mathematization, see Roux (2013, 57–58).
10. Th is can be related to suggestions by Noel Swerdlow (1993) and

H. Floris Cohen (1994; 2010) that an ancient mathematical form of natu ral
philosophy was rediscovered in the fi ft eenth and sixteenth centuries rather
than being transmitted to them via a  fourteenth- century discovery.
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On may 7, 1610, Galileo Galilei wrote to Belisario Vinta, Secre-
tary of State of the  Grand Duchy of Tuscany, about the terms of his  future posi-
tion as a court mathematician. In his letter Galileo expressed the wish that 
“His Majesty add the name of Phi los o pher to that of Mathematician,” motivat-
ing his request with the fact that he had “spent more years studying philoso-
phy than months studying pure mathe matics” (Galilei 1890–1909, 10:353).

Th e fact that Galileo spoke of “pure mathe matics,” and not just of 
“mathe matics,” is highly signifi cant. In his view, to be a phi los o pher meant 
to be a mathematician, but one who was interested in discovering the real 
constitution of the physical world. In the Th ird Day of the Two New Sciences 
(1638) Galileo describes his approach to the study of accelerated motion, and 
explains in which sense the phi los o pher’s mathematical method diff ers from 
that of a pure mathematician:

Not that  there is anything wrong with inventing at plea sure some kind of 
motion and theorizing about its consequent properties, in the way that some 
men have derived spiral and conchoidal lines from certain motions, though 
nature makes no use of  these paths. . . .  But since nature does employ a cer-
tain kind of acceleration for descending heavy  things, we deci ded to look into 
their properties so that we might be sure that the defi nition of accelerated 
motion which we are about to adduce agrees with the essence of naturally 
accelerated motion (Galilei 1974, 153; 1890–1909, 8:197).1

Similarly, in his Dialogue (1632), Galileo contrasts the ambition of the math-
ematical astronomer, who contents himself with saving the phenomena, to 

1

reading the book of nature
The Ontological and Epistemological Under pinnings 
of Galileo’s Mathematical Realism

ca r l a r ita pa lm er i no
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that of the “astronomer phi los o pher,” who seeks “to investigate the true con-
stitution of the universe— the most admirable prob lem that  there is” (Gali-
lei 1967, 341). For although what ever we read in the book of nature— a book 
that, as Galileo famously argues in the Assayer (1623), is written in the lan-
guage of mathe matics— “is the creation of the omnipotent Craft sman, . . .  
nevertheless that part is most suitable and most worthy which makes His 
works and His craft smanship most evident to our view” (Galilei 1957, 3).2

But how is it pos si ble for the natu ral phi los o pher to get access to the 
mathematical language of the book of nature and to fi nd out which geomet-
rical line or which mathematical formula corresponds to the essence of a 
par tic u lar physical phenomenon? As I  shall try to show in this chapter, 
Galileo’s answer to this question was much more sophisticated than schol-
ars generally assume. In addressing the question concerning the relation 
between mathematical and physical truths, Galileo carefully kept ontologi-
cal considerations distinct from epistemological considerations. In his view, 
the fact that physical phenomena cannot always be translated into  simple 
mathematical laws was not an argument against mathematical realism, but 
was only a sign that the mathematical order of nature is oft en too complex 
to be grasped by the  human mind.

is the book of nature  really written 
in the language of mathe matics?

In Th e Crisis of Eu ro pean Sciences and Transcendental Phenomenology 
(1970), Edmund Husserl devoted considerable attention to Galileo’s mathe-
matization of nature. According to Husserl, Galileo took it for granted that 
geometry, which “produces a self- suffi  cient, absolute truth,” could be applied 
to nature “without further ado,” without refl ecting “on how the  free, imagi-
native variation of this world and its shapes results only in pos si ble empiri-
cally intuitable shapes and not in exact shapes” (Husserl 1970, 49). In other 
words, Galileo overlooked the fact that concrete bodies are not “the geometri-
cally pure shapes which can be drawn in ideal space,” but “are thinkable only 
in gradations: the more or less straight, fl at, circular,  etc.” (Husserl 1970, 25).

Whereas in Husserl’s eyes Galileo was a Pythagorean Platonist mathe-
matician who performed a “surreptitious substitution” of the ideal objects 
of mathe matics for the real objects of the physical world (see Soff er 1990; De 
Gandt 2004; Moran 2012), many scholars believe that Galileo cannot be con-
sidered a Platonist precisely  because he regarded mathematical laws as ide-
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alizations that do not have a counterpart in the  actual world. In a passage of 
the Two New Sciences, for example, Galileo explic itly admits that: “No fi rm 
science can be given of such accidents of heaviness, speed, and shape, which 
are variable in infi nitely many ways. Hence to deal with such  matters scien-
tifi cally, it is necessary to abstract from them. We must fi nd and demon-
strate conclusions abstracted from the impediments, in order to make use 
of them in practice  under  those limitations that experience  will teach us” 
(1974, 225).

According to Noretta Koertge’s infl uential interpretation, Galileo’s con-
cern with the “prob lem of accidents”— a prob lem for which he developed 
increasingly sophisticated solutions in his writings— shows that the Assay-
er’s image of the universe as a book written in the language of geometry 
should not be “taken as a signifi cant or careful statement of Galileo’s phil-
osophical views” (Koertge 1977, 402). In her view, Galileo endorsed neither 
a Pythagorean ontology nor a Platonist epistemology. Likewise, Robert 
Butts perceived an inconsistency between Galileo’s practice of science and 
his professed mathematical realism, arguing that, “Galileo’s argument that 
mathe matics applies to the world was more a metaphysical faith than a 
philosophically established conclusion. He seems to have concluded that if 
the world does not conform to the truths of mathe matics, so much the worse 
for the world” (Butts 1978, 81). Similarly, in an article published in 1985, 
Ernan McMullin argued that Galileo “is not entirely single- minded” in 
maintaining the view that the eff ects of the physical impediments can be 
calculated. “He sometimes lapses back into a Platonic pessimism about the 
‘imperfections of  matter, which is subject to many variations and defects.’ . . .  
But if this  were the case, the Book of Nature would not  really be written in the 
language of mathe matics, or would, at least, be poorly written” (McMullin 
1985, 251). Fi nally, Maurice Finocchiaro has recently claimed that Galileo’s 
remark in the Assayer that the book of nature is written in mathematical 
language was “more a plea for in de pen dent-mindedness” than a statement of 
mathematical realism. Moreover, “if and to the extent that the remark on the 
book of nature . . .  can be taken as an expression of mathematical realism or 
Platonism, it should be noted that the remark is an epistemological refl ec-
tion, not an instance of concrete scientifi c practice, and one can raise the 
question  whether Galileo’s words and deeds correspond” (Finocchiaro 2010, 
115–16). In Finocchiaro’s view, they oft en  don’t correspond.

In this chapter I  shall try to show that Galileo’s claim that nature is writ-
ten in the language of mathe matics, far from being a rhetorical statement or 
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an unwarranted metaphysical conviction, is grounded in coherent ontolog-
ical and epistemological arguments. In his works Galileo repeatedly argues 
that mathematical entities are ontologically in de pen dent from us and that the 
physical world has a mathematical structure. Th is structure is, however, too 
complex to be fully grasped by our fi nite intellect, which is why we need 
to simplify physical phenomena in order to be able to deal with them math-
ematically. What scholars have regarded as an opposition between the ab-
stract and the concrete, the mathematical and the physical, was intended by 
Galileo as a distinction between what is mathematically  simple, and hence 
easy for our intellect to grasp, and what is mathematically complex and 
hence unknowable.

In the following pages I  shall fi rst focus on Galileo’s use of the meta phor 
of the book of nature, paying par tic u lar attention to his views concerning 
the diff  er ent properties of verbal and mathematical language. Th en I  shall 
turn my attention to Galileo’s refl ections on the relation between mathemat-
ical and physical truths which, as I  shall try to demonstrate, are fully in ac-
cordance with his scientifi c practice.

galileo on verbal and mathematical language

In his book on Nominalism and Constructivism in Seventeenth- Century 
Mathematical Philosophy, David Sepkoski observes that “the epistemology 
of mathematization is fundamentally linked to the epistemology of lan-
guage” (Sepkoski 2007, 2). Indeed, early modern authors such as Gassendi, 
Hobbes, Locke, and Berkeley  adopted a nominalistic theory of language that 
also infl uenced their views concerning the relation between mathe matics 
and the physical world. While Kepler and Galileo conceived of mathe matics as 
the “language of nature,”  these authors regarded it “as a ‘language’ for 
describing nature that was subject to the same epistemological conventions 
that govern the structure, objects, and claims to knowledge of natu ral lan-
guages” (125).

As I  shall try to document in the following pages, Galileo’s works con-
tain very impor tant, albeit unsystematic, considerations concerning the 
conventional nature of verbal language, which display in ter est ing analogies 
with  those of his nominalist contemporaries. Contrary to the latter, however, 
Galileo was not willing to extend his conclusions to mathematical language. 
Rather, the chief function of Galileo’s use of the meta phor of the book of 
nature is precisely that of contrasting the exact and “obligatory” character 
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of mathematical language to the imprecise and arbitrary character of verbal 
language.3

In the famous passage of the Assayer to which we have already referred, 
Galileo reminds his Jesuit opponent that philosophy is not

a book of fi ction created by some man, like the Iliad or Orlando Furioso— 
books in which the least impor tant  thing is  whether what is written in them 
is true. Well, Sarsi, that is not the way  matters stand. Philosophy is written 
in this  grand book— I mean the universe— which stands continually open to 
our gaze, but it cannot be understood  unless one fi rst learns to comprehend 
the language and interpret the characters in which it is written. It is written 
in the language of mathe matics, and its characters are triangles, circles, and 
other geometrical fi gures, without which it is humanly impossible to com-
prehend a single word of it. (1957, 3)

In other places Galileo uses the same topos to convey the originality of his 
approach to philosophy. While his Scholastic opponents spend their time 
commenting on Aristotle’s books and disputing ad utranque partem, he 
prefers to study “the book of nature, where  things are written in one way 
only” (1890–1909, 248). Fi nally in the Copernican Letters, which represent 
the manifesto of his ideas concerning the relationship between revealed 
and physical truths, Galileo compares the book of nature, which God wrote 
at the moment of creation, to the book of Scripture, which he dictated to 
evangelists and prophets:

Holy Scripture and nature derive equally from the Godhead, the former as 
the dictation of the Holy Spirit, and the latter as the most obedient executrix 
of God’s  orders; moreover, to accommodate the understanding of the com-
mon  people it is appropriate for Scripture to say many  things that are diff  er-
ent (in appearance and in regard to the literal meaning of the words) from 
the absolute truth; on the other hand, nature is inexorable and immutable, 
never violates the terms of the laws imposed upon her, and does not care 
 whether or not her recondite reasons and ways of operating are disclosed to 
 human understanding. (Galilei 1989, 93)

As has been observed by Giorgio Stabile, in  these lines Galileo relies on the 
medieval image of God’s two books, but attributes a greater binding force to 
the natu ral law (lex naturae) than to the divine law (lex divina). While the 
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Bible must follow the logic of ordinary language, which is conventional and 
hence negotiable, the book of nature, being the reifi cation of God’s word, is 
unmediated by  human conventions, fi xed and inviolable (Stabile 1994, 55–
56). It is in this regard in ter est ing to see that Galileo’s distinction between 
the respective status of verbal and mathematical languages also infl uences 
his judgment concerning the accessibility of God’s two books. Augustine, 
an author Galileo oft en quotes, claimed in his Enarrationes in Psalmos (XLV, 
7), that while the pages of the Bible could only be enjoyed by  those who know 
how to read, the book of the universe is accessible to every one. Galileo be-
lieves, on the contrary, that the book of nature is more diffi  cult to decipher 
than Scripture,  because the latter is adjusted to the intellectual capacities of 
common  people, whereas the former is not. As he explains in a letter to For-
tunio Liceti in January 1641: “the book of philosophy is that which stands 
perpetually open before our eyes. But being written in characters diff  er ent 
from  those of our alphabet, it cannot be read by every body; and the charac-
ters of this book are triangles, squares, circles, spheres, cones, pyramids and 
other mathematical fi gures, the most suited for this sort of reading” (1890–
1909, 18:295).

As we have seen, Galileo contrasts the book of nature with works of fi c-
tion, which do not pretend to tell the truth, with Scholastic books, which tell 
questionable truths, and with scriptural books, which do tell the truth, but 
a truth that is oft en merely “adumbrated.” 4 What  these books have in com-
mon is the fact that they are written in a language that is ambiguous by its 
very nature.

Galileo’s considerations concerning natu ral language, which are scat-
tered throughout his works, touch upon three main themes, notably the 
arbitrary character of names, the inconstancy of meanings, and the link 
between words and appearances. In fact, Galileo’s ideas on  these subjects 
show an in ter est ing resemblance with  those contained in Locke’s Essay Con-
cerning  Human Understanding.

In the Th ird Book of the Essay, where he explains that words are made 
“arbitrarily the mark of an idea” by a “voluntary imposition,” Locke (1690) 
criticizes Scholastic phi los o phers for coining names such as “saxietas, metal-
lietas, lignietas and the like . . .  , which should pretend to signify the real 
essences of  those substances whereof they knew they had no ideas” (3.2.1, 
187; 3.8.2, 230).

Th e conventional character of verbal language was already emphasized 
by Galileo, oft en in the context of a critique of the essentialist defi nitions put 
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forward by his Aristotelian opponents. In answering Ludovico delle Co-
lombe, Galileo notices, for example, that “the explications of terms are  free” 
(1890–1909, 4:632) and that the attribution of a name can hence never be 
mistaken. However, precisely  because of their arbitrary character, words 
cannot reveal the essences of  things. A similar point is made in the Letters 
on the Sunspots and in the Assayer, where Galileo takes issue with the scien-
tifi c nomenclature used by his Aristotelian opponents. Welser is  free to call 
the sunspots “stars” and Grassi may well refer to a comet as a “planet” pro-
vided they  don’t pretend that their word choice can solve a dispute concern-
ing the nature of celestial bodies. In the Th ird Letter on the Sunspots to Mark 
Welser, we read: “In truth, I am not insisting on nomenclature, for I know 
that every one is  free to adopt it as he sees fi t. As long as  people did not 
believe that this name conferred on them certain intrinsic and essential 
conditions . . .  one might also call solar spots ‘stars,’ but they have, in es-
sence, characteristics that diff er considerably from  those of  actual stars” 
(Galilei and Scheiner 2010, 289).

And in the Assayer Galileo observes: “I am not so sure that in order to 
make a comet a quasi- planet, and as such to deck it out in the attributes of 
other planets, it is suffi  cient for Sarsi and his teacher to regard it as one and 
so name it. If their opinions and their choices have the power of calling into 
existence the  things they name, then I beg them to do me the  favor of nam-
ing a lot of old hardware I have about my  house, ‘gold’ ” (1957, 253).

In the Dialogue Galileo also points out that verbal language is full of 
misleading synonymies, which can sometimes hinder the pro cess of knowl-
edge (1967, 403). When for example Simplicio voices his skepticism concern-
ing Gilbert’s geomagnetic theory, Salviati asks himself  whether it is not only 
 because of “a single and arbitrary name” that his Aristotelian interlocutor is 
reluctant to accept the idea that the earth is a big lodestone. If our planet had 
not been called “earth,” a term which also signifi es “that material which we 
plow and sow,” but rather “stone,” then “saying that its primary substance 
was stone would surely not have met re sis tance or contradiction from any-
body.”

In the Essay Concerning  Human Understanding, Locke was to regard the 
unsteady application of names as one of the  great abuses of language. For 
although words are “intended for signs of my ideas, to make them known to 
 others, not by any natu ral signifi cation, but by a voluntary imposition, it is 
plain cheat and abuse, when I make them stand sometimes for one  thing and 
sometimes for another” (1690, 3.10, 240–51). Galileo made a somewhat similar 
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point when he observed that misunderstandings and errors do not originate 
from the “fi rst defi nition” of a name, which being conventional can never be 
mistaken, but from the fact that “one  doesn’t stick to the terms originally 
included in the defi nition, or forms diff  er ent concepts of the defi ned  thing” 
(1890–1909, 4:632). Galileo repeatedly accuses Scholastic authors of being 
incoherent in the application of terms that they themselves have coined. 
If, following Aristotle, one defi nes the term “place” as the “surface of the 
surrounding body,” then it makes no sense to inquire, as Ludovico delle 
Colombe does,  whether the outermost heaven is in a place. Similarly, if 
one agrees with Aristotle that humid bodies are  those that are not confi ned 
within limits of their own, but adapt to the form of their container (De gen. 
2.2, 329b), then one must reach the conclusion that fi re is humid (Galilei 
1890–1909, 4:632–33). Disputes concerning the imposition of names are the 
business of grammarians, not of phi los o phers. Th e latter must however 
make sure that terms are not “fi rst defi ned in one way, and then applied to 
scientifi c demonstrations in another” (Galilei 1890–1909, 4:698–700).

Another issue that is dear to Galileo and Locke alike is the relation be-
tween names and appearances. In the third book of his Essay, Locke intro-
duces a famous distinction between the real essence and the nominal essence 
of  things, which he anchors in the distinction, made in the second book, 
between the primary qualities of bodies (i.e., solidity, extension, motion or 
rest, number or fi gure) and their secondary qualities, which are the sensa-
tions produced in us by the primary qualities. Due to our “ignorance of the 
primary qualities of the insensible parts of bodies,” the real essence of a 
substance, which Locke identifi es with its internal constitution, remains 
unknown to us, and we have “no name that is the sign of it” (1690, 4.3.12, 271; 
3.3.18, 196). Th e abstract general ideas we form of substances “with names 
annexed to them, as patterns, or forms,” refer to their nominal essences, 
which is the collection of par tic u lar qualities that one observes together in a 
substance (3.3.13, 193). As Locke explic itly acknowledges, “the ideas that our 
complex ones of substances are made up of, and about which our knowledge 
concerning substances is most employed, are  those of their secondary quali-
ties.” (4.3.11, 271). Given “that  there is no discoverable connexion between 
any secondary quality and  those primary qualities,” the gap between the real 
and the nominal essence of substances remains unbridgeable (4.3.12, 271). 
According to Locke, the only category of objects for which nominal and real 
essences coincide is constituted by geometrical fi gures, the defi nition of 
which is “not only the abstract idea to which the general name is annexed, but 
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the very essentia or being of the  thing itself; that foundation from which all its 
properties fl ow, and to which they are all inseparably annexed” (3.3.18, 195).

Th e relation between names and  things, attributes and essences is also 
addressed, though in an unsystematic way, in Galileo’s writings. In the Dia-
logue, Simplicio states with conviction that the cause of  free fall is called 
“gravity.” Salviati reminds him that to know the name of a  thing is not the 
same as to know its essence:

You are wrong, Simplicio; what you  ought to say is that every one knows that 
it is called “gravity.” What I am asking you for is not the name of the  thing, 
but its essence, of which essence you know a bit more than you know about 
the essence of what ever moves the stars around. I except the name which has 
been attached to it and which has been made a familiar  house hold word by 
the continual experience that we have of it daily. But we do not  really under-
stand what princi ple or what force it is that moves stones downward, any 
more than we understand what moves them upward  aft er they leave the 
thrower’s hand, or what moves the moon around. We have merely, as I said, 
assigned to the fi rst the more specifi c and defi nite name “gravity,” whereas 
to the second we assign the more general term “impressed force,” and to the 
last- named we give “spirits,”  either “assisting” or “abiding”; and as the cause 
of infi nite other motions we give “nature.” (1967, 234–35)

In the Letters on Sunspots (Galilei and Scheiner 2010, 91) Galileo claims 
that “names and attributes must accommodate themselves to the essence 
of the  things, and not the essence to the names,  because  things come fi rst 
and names aft erwards.” It is however vain “to try and penetrate the true 
and intrinsic essence of natu ral substances,” which means that we have to 
content ourselves with defi nitions dependent on the perceived qualities of 
bodies:

If upon inquiring into the substance of clouds, I am told that it is a moist 
 vapor, I  will then wish to know what vapor is. Perhaps I  will be informed 
that it is  water, attenuated by virtue of warmth and thus dissolved into va-
por, but being equally uncertain of what  water is, I  will in asking about this 
fi  nally hear that it is that fl uid body fl owing in rivers that we constantly 
 handle and use. But such information about  water is merely closer and de-
pendent on more [of our] senses, but not more intrinsic than [the informa-
tion] I had earlier about clouds. (Galilei and Scheiner 2010, 254)



38 carl a rita palmerino

Th at information derived from our senses is not able to reveal the intrinsic 
essences of  things, is something Galileo also claims in a famous passage of 
the Assayer that anticipates Locke’s distinction between primary and sec-
ondary qualities. When explaining that tastes, odors, and colors do not re-
side in the perceived objects, but only in the perceiving subject, Galileo 
declares that they are “mere names.” Th e fact that we have imposed upon 
sensory qualities “special names, distinct from  those of the other and real 
qualities mentioned previously” (i.e., size, fi gure, quantity, motion, and rest) 
makes us wrongly believe that “they  really exist as actually diff  er ent from 
 those” (1957, 274). What in fact happens is that our senses transliterate the 
mathematical language of the book of nature into the language of experi-
ence, which is riddled by synonymies and homonymies. Th e famous fable of 
sounds, told in the Assayer, is nothing other than a way of proving that “the 
bounty of nature in producing her eff ects” is such that “our senses and ex-
perience” sometimes judge as identical phenomena that are in fact produced 
by utterly diff  er ent  causes (258–59).

Although our defi nitions of natu ral substances are inevitably dependent 
on the senses, it is not a vain enterprise to try and provide an accurate analy-
sis of some of their properties. In the case of sunspots, Galileo notices, for 
example, that attributes such as their “location, motion, shape, size, opacity, 
mutability, appearance, and disappearance” can “be learned by us and then 
serve as our means better to speculate upon other more controversial con-
ditions of natu ral substances” (Galilei and Scheiner 2010, 255). Natu ral phi-
los o phers must hence draw their attention to the quantitative properties of 
bodies, which contrary to sensorial qualities are not “mere names,” but have 
an in de pen dent ontological status. While names have been arbitrarily im-
posed by men onto  things, numbers and geometrical fi gures have been in-
scribed by God into  things, and hence have the power of disclosing their 
essences.

On the basis of what is just said, it might appear strange to see Galileo 
argue, in the Two New Sciences, that mathematical defi nitions are “the mere 
imposition of names, or we might say abbreviations of speech,” which is ex-
actly what many years before he had declared about verbal language.5 Th e 
arbitrary character of mathematical language resides, however, only in the 
choice of the signifi er, not in that of the signifi ed. As Galileo repeatedly ex-
plains, the language of mathe matics is strict and unambiguous. Each sign 
carries one and only one meaning, and the propositions we can construct 
out of  these signs can but be true or false. While verbal language is the lan-
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guage of persuasion, mathematical language is the language of certainty: 
“Geometrical  things cannot be aff ected by cavils and paralogisms, as they 
are true in one way only, can be explained in one way only and intended in 
one way only” (1890–1909, 458).

Th e extent to which Galileo thinks that the language of the book of na-
ture is accessible to the mathematical phi los o pher is a question that is ad-
dressed in the following section.

decoding the book of nature

Galileo explic itly acknowledges that mathematical laws are idealizations 
that do not exactly correspond to the be hav ior of physical bodies. Th is has 
led some scholars to regard the claim that the book of nature is written in 
the language of mathe matics as a rhetorical statement, which is neither rep-
resentative of Galileo’s philosophical views nor in accordance with his sci-
entifi c practice.

As I have argued elsewhere (Palmerino 2006, 39), the fault with this in-
terpretation is that it attributes an ontological meaning to considerations 
that are in fact epistemological. When Galileo claims, for example, that in the 
study of motion one must abstract from the “accidents of heaviness, speed, 
and shape, which are variable in infi nitely many ways,” he just means that 
their random variations are too complex to be translated into a  simple math-
ematical law. As Galileo explains in the Assayer

Regular lines are called  those that, having a single, fi rm and determinate 
description, can be defi ned and whose accidents and properties can be 
demonstrated . . .  But the irregular lines are  those that, not having any deter-
mination whatsoever, are infi nite and casual, and thus indefi nable, and of 
which therefore no property can be demonstrated and nothing, in sum, can be 
known. To say that “this accident happens according to an irregular line” is for 
that reason the same as to say “I do not know why it happens.” (1890–1909, 458)

In Galileo’s eyes the prob lem is hence not that irregular lines (and physical 
accidents) are not mathematical, but rather that their mathematical struc-
ture is beyond the reach of our intellectual skills.

Th e issue of the relation between physical and mathematical truths is 
explic itly addressed by Galileo in the second day of the Dialogue (1967, 203). 
Having patiently listened to a long mathematical demonstration proposed 
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by Salviati, the Aristotelian Simplicio objects that mathematical truths lose 
their validity when they are applied to physical  matters. “A sphere touches a 
plane in one point” is, for example, a typical case of a proposition that is true 
in the abstract, but not in the concrete. Salviati off ers a very articulated an-
swer to this objection, the fi rst step of which consists in providing a mathe-
matical proof of the validity of the proposition at stake.6 Such a proof can of 
course not satisfy Simplicio, who regards it as valid “for abstract spheres, but 
not for material ones” (206). Challenged by Salviati to explain why what is 
conclusive for immaterial and abstract spheres should not apply to material 
ones, Simplicio observes that “material spheres are subject to many acci-
dents,” like for example porosity and weight, which make it impossible to 
“achieve concretely what one imagines of them in the abstract” (206–7). Sal-
viati is however not willing to accept the equation between “abstract” and 
“perfect,” on the one hand, and “concrete” and “imperfect” on the other hand. 
“Even in the abstract, an immaterial sphere which is not a perfect sphere 
can touch an immaterial plane which is not perfectly fl at in not one point, 
but over a part of its surface, so that what happens in the concrete up to this 
point happens the same way in the abstract” (207). Contrary to Simplicio, 
Salviati uses the attributes “perfect” and “imperfect” not to draw a bound-
ary between mathe matics and physics, but to distinguish what is regular, 
and hence mathematically  simple, from what is irregular, and hence com-
plex.7 Galileo’s spokesman is ready to admit that the be hav ior of physical 
bodies is not always translatable into a  simple mathematical law, but he in-
sists that “the phi los o pher geometer, when he wants to recognize in the 
concrete the eff ects which he has proved in the abstract, must deduct the 
material hindrances, and if he is able to do so, I assure you that  things are in 
no less agreement than arithmetical computations. Th e errors, then, lie not 
in the abstractness or concreteness, nor in geometry or physics, but in a cal-
culator who does not know how to make a true accounting” (207–8). In order 
to be able to “make a true accounting,” the phi los o pher geometer must hence 
abstract from  those material hindrances that render physical phenomena too 
complex to be grasped. As Salviati explic itly states in the fi rst day of the Dia-
logue (1967, 103), the  human intellect can in fact only understand a limited 
number of mathematical propositions, but “with regard to  those few which 
the  human intellect does understand . . .  its knowledge equals the divine in 
objective certainty, for  here it succeeds in understanding necessity, beyond 
which  there can be no greater sureness.” When Galileo argues in the Two 
New Sciences that it is not pos si ble for the natu ral phi los o pher to reach a 
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“fi rm science . . .  of such accidents of heaviness, speed, and shape, which are 
variable in infi nitely many ways” (1974, 225) he does not mean that  these 
accidents are not mathematical, but just that we are not able “to deal with 
them scientifi cally,” due to their complex mathematical character.

In commenting on Galileo’s refl ections on physical- mathematical 
reasoning, Maurice Finocchiaro has recently argued that “we have neither 
separation nor identifi cation of the two domains, but rather correspon-
dence. We can never know in advance that a par tic u lar mathematical truth 
corresponds to physical real ity, or that a par tic u lar physical situation is rep-
resentable by a par tic u lar mathematical entity, but we can claim in advance 
as a  matter of methodological prescription that  every physical situation is 
representable by some mathematical entity” (2010, 119). While I believe 
that  these lines perfectly catch the meaning of Galileo’s ideas concern-
ing the relation between physical and mathematical truths, I  don’t fully 
understand why Finocchiaro claims that “when so interpreted,” the As-
sayer’s remark on the book of nature being written in the language of mathe-
matics, “is a long way from the extreme mathematical realism or Platonism 
sometimes attributed to Galileo” (119). If “mathematical realism or Pla-
tonism” means—as Finocchiaro claims— the “identifi cation or confl ation of 
mathematical and physical truth,” then Galileo is indeed not a Platonist. As I 
have argued elsewhere (Palmerino 2006, 41–42), Galileo in fact believes that 
while what is true in physics must necessarily be true in mathe matics, not all 
mathematical propositions must necessarily fi nd an instantiation in the phys-
ical real ity. However, if by “mathematical realism or Platonism” one intends 
the view that mathematical entities are ontologically in de pen dent from our 
mind, then Galileo is certainly a Platonist. In his writings he not only asserts 
that the structure of real ity is intrinsically mathematical, but also claims that 
mathematical propositions are true in de pen dently of  whether they are known 
by us. While God knows all mathematical propositions, we only understand 
a limited amount of them.

In his book, Finocchiaro takes issue not only with  those scholars who 
explic itly talk of Galileo’s Platonism, but also with  those who implicitly at-
tribute to him a confl ation between mathematical and physical truths. In his 
view, “the most common instance of such implicit confl ation is the interpre-
tation that Galileo was certain about the truth of Copernicanism  because 
of its mathematical simplicity” (Finocchiaro 2010, 115n21). Also in this case, 
I only partially agree with Finocchiaro’s point of view. To be sure, Galileo 
did not think that the criterion of mathematical simplicity could yield a 
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demonstration of the validity of the Copernican system, for other wise he 
would not have put forward the physical proof of the earth’s motion based 
on the phenomenon of the tides. By arguing that the fl ux and refl ux of the 
sea could not be brought about by any other cause than the double motion of 
the earth, Galileo tried to transform what was just a probable hypothesis 
into a demonstrated scientifi c truth, the only truth capable of outrivaling 
the authority of the book of Scripture. If one looks at Galileo’s scientifi c 
practice, one sees however that he did attribute an impor tant heuristic 
function to the princi ple of simplicity of nature. Besides being invoked in 
the Dialogue to argue that the Copernican system is more probable than the 
Ptolemaic one (1967, 123–24), that princi ple is presented in the Two New 
Sciences as the guiding assumption in Galileo’s search for the true law of 
 free fall.

Further, it is as though we have been led by the hand to the investigation of 
naturally accelerated motion by consideration of the custom and procedure 
of nature herself in all her other works, in the per for mance of which she ha-
bitually employs the fi rst, simplest, and easiest means. And indeed, no one 
of judgment believes that swimming or fl ying can be accomplished in a 
simpler or easier way than that which fi sh and birds employ by natu ral 
instinct. Th us when I consider that a stone, falling from rest at some height, 
successively acquires new increments of speed, why should I not believe that 
 those additions are made by the simplest and most evident rule? . . .  And we 
can perceive the increase of swift ness to be made simply, conceiving men-
tally that this motion is uniformly and continually accelerated in the same 
way whenever, in any equal times, equal additions of swift ness are added 
on. (1974, 153–54)

Also in this case, however, Galileo regards mathematical simplicity as an 
indication not of the truth, but of the plausibility of his defi nition of natu ral 
accelerated motion. In order to conclusively demonstrate that the law of free 
fall that can be mathematically derived from this demonstration corresponds 
to the “acceleration employed by nature in the motion of her falling heavy 
bodies,” he invokes the result of the famous experiment with a bronze ball 
rolled down a groove in an inclined plane (1974, 169–70). Mathematical rea-
soning can help the natu ral phi los o pher to draw the bound aries of what is 
physically pos si ble, but only sensory experiences can establish  whether a 
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specifi c physical phenomenon obeys a specifi c mathematical law (see also 
Palmerino 2006, 43).

Galileo’s repeated appeals to the princi ple of simplicity of nature seem 
to be at odds with other passages of his works, where he claims that nature 
does not conform to the  human criteria of perfection and simplicity. In a 
letter of July 1611 to Gallanzone Gallanzoni, Galileo observes for exam-
ple that if a man had been allotted the task of defi ning the relation among 
the respective movements of the celestial spheres, he would have chosen 
the “fi rst and most rational proportions” (1890–1909, 149). God, however, 
“without consideration for our sense of symmetry, arranged  those spheres 
according to proportions which are not only incommensurable and irra-
tional, but totally inaccessible to our intellect.” Galileo illustrates this point 
with an in ter est ing mathematical example. A person having an insuffi  cient 
understanding of geometry might won der why the circumference of the 
circle “has not been made exactly three times as long as the dia meter or cor-
responding to it in some better known proportion.” Th e answer is that, if 
this had been the case, many “admirable” properties of the circle would 
have been lost: “the surface of a sphere would not have been four times as 
big as the maximum circle, nor would the volume of a cylinder have been 
3/2 of that of a sphere, and in sum no other geometrical property would 
have been true as it is now” (1890–1909, 149–50). In order to appreciate the 
perfection and simplicity of the sphere, one should hence know all of its 
mathematical properties, which is something our fi nite intellect cannot 
achieve.

Two impor tant conclusions can be drawn from the letter to Gallanzone. 
First, Galileo regards mathematical entities as divinely created objects that 
are ontologically in de pen dent from our mind. Second, he believes that God 
always operates in the most  simple and rational manner, even when his acts 
look irrational to us.

Th is can help explain the presence in the Dialogue of two apparently 
contradictory statements. Galileo claims, on the one hand, that we should 
not “make  human abilities the mea sure of what nature can do,” as  there is 
no single physical phenomenon of which we can achieve “a complete under-
standing” (1967, 101). At the same time, however, he insists that the mathe-
matical phi los o pher, in his attempt to unveil the real constitution of the 
universe, should let himself be guided by the assumption that nature “does 
not act by means of many  things when it can do so by means of few.”8
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Th e princi ple of simplicity of nature fi nds an ontological justifi cation 
precisely in the passage of the Dialogue in which Galileo addresses the ques-
tion of the relation between mathematical and physical truths. It might 
hence be useful to resume our analy sis of this crucial text.

 Aft er having made the point that “abstract” and “concrete” are not nec-
essarily synonymous with “perfect” and “imperfect,” Salviati observes that 
“meeting in a single point is not at all a special privilege of the perfect sphere 
and a perfect plane.” So, even if Simplicio  were right in claiming that nei-
ther a perfect sphere nor a perfect plane can be found in nature,  there are 
still good reasons to think that an imperfect material sphere and an imper-
fect material plane would touch each other at a single point. For in order to 
touch each other “with parts of their surfaces,”  these parts must  either be 
both “exactly fl at, or if one is convex, the other must be concave with a cur-
vature which exactly corresponds to the convexity of the other.” Such con-
ditions are, however, “much more diffi  cult to fi nd,  because of their too strict 
determinacy, than  those  others in which their random shapes are infi nite in 
number” (1967, 208). Salviati’s remark seems to have a double function. Th e 
fi rst is to guarantee right of existence to the mathematical point, an entity 
that plays a crucial role in Galileo’s physics. In the Two New Sciences, in fact, 
Galileo advocates the composition of space, time, and  matter out of nonex-
tended physical atoms.9 Second, by observing that random shapes, being 
infi nite in number, are more likely to be found in nature than regular shapes, 
Salviati provides an explanation of the fact that material bodies, with 
their variable accidents,  don’t behave according to  simple mathematical 
laws. Salviati’s remark, however, puzzles Sagredo, who does not see why it 
should be more diffi  cult to obtain from a block of marble a perfect sphere or 
pyramid rather than a perfect  horse or grasshopper. Salviati’s reply reads as 
follows:

I say that if any shape can be given to a solid, the spherical is the easiest of 
all, as it is the simplest, and holds that place among all solid fi gures which 
the circle holds among surfaces—  . . .  Th e formation of a sphere is so easy 
that if a circular hole is bored in a fl at metal plate and a very roughly 
rounded solid is rotated at random within it, it  will without any other ar-
tifi ce reduce itself to as perfect as spherical sphere as pos si ble . . .  But when 
it comes to forming a  horse or, as you say, a grasshopper, I leave it to you to 
judge, for you know that few sculptors in the world are equipped to do 
that. (209)
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Sagredo agrees with Salviati that “the  great ease of forming a sphere stems 
from its absolute simplicity,” whereas the production of complex fi gures is 
rendered diffi  cult by their “extreme irregularity.” Th is is for him a reason to 
won der  whether objects with a regular shape are  really as rare as many be-
lieve: “If of the shapes which are irregular, and hence hard to obtain,  there 
is an infi nity which are nevertheless perfectly obtained, how can it be right 
to say that the simplest and therefore the easiest of all is impossible to ob-
tain?” (210). Sagredo’s curiosity remains unsatisfi ed as Salviati suddenly puts 
an end to the discussion to go back to “serious and impor tant  things.” Th e 
right answer to Sagredo would of course be that, in purely probabilistic 
terms, it is equally diffi  cult to fi nd an object that exactly corresponds to any 
given irregular fi gure than to any given regular fi gure. But this is not the 
conclusion that Galileo wants to suggest. In his view, the fact that regular 
fi gures are “the simplest and easiest of all” increases the probability of their 
occurrence in nature. And, in turn, the fact that “nature . . .  does not act by 
means of many  things when it can do so by means of few” (117) increases 
the chance that the mathematical phi los o pher  will be able to decode some 
chapters of the book of nature.

conclusion

At this point we can return to the question raised in the introduction, as to 
 whether Galileo’s remark that the book of nature is written in the language 
of mathe matics may be taken as a literal expression of his philosophical 
views. As I have tried to show in this chapter, this question must be an-
swered in the affi  rmative, as  there is no confl ict between Galileo’s professed 
mathematical realism and his scientifi c practice. When Galileo claims that 
the natu ral phi los o phers must abstract from accidents and impediments in 
order to be able to mathematize physical phenomena, he does not mean 
that  these phenomena are intrinsically nonmathematical, but just that 
their mathematical setup is too complex to be grasped by our fi nite intel-
lect. Moreover, the very fact that the mathematical phi los o pher is able, simply 
by “eliminating the material hindrances,” to translate physical phenomena 
into exact mathematical laws, is in Galileo’s eyes a sign of the fact that 
nature is or ga nized according to the criteria of mathematical order and 
simplicity.

In his above- mentioned book on seventeenth- century mathematical phi-
losophy, David Sepkoski (2007, 83) analyzes Isaac Barrow’s considerations on 
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the ontological and epistemological basis of mathe matics, which he regards 
as being “reminiscent of Gassendi’s.” In Sepkoski’s view, Barrow’s construc-
tivist view of mathe matics, according to which “mathematical objects are 
created by the mathematician and do not necessarily represent real objects 
in physical nature,” fi nds “a broad and general epistemological justifi cation” 
in Gassendi’s nominalism (124–25). By claiming that “a mathematical num-
ber has no existence proper to itself,” Barrow destabilizes the ontological 
foundations of arithmetic (Barrow 1734, 41, 103).10 Sepkoski admits, how-
ever, that Barrow “is more hesitant when it comes to geometry, since he be-
lieves that on some level geometrical demonstrations do correspond with 
physical realities” (Sepkoski 2007, 103).

Barrow’s considerations concerning the ontological status of geometri-
cal objects show, in my opinion, that his philosophy of mathe matics is far 
closer to Galileo’s than to Gassendi’s. Like the former, and contrary to the 
latter, Barrow seems in fact willing to admit that geometrical fi gures have a 
real existence outside of our intellect.11

In a passage of Th e Usefulness of Mathematical Learning, Barrow (1734) 
explic itly takes issue with the Jesuit Giuseppe Biancani, according to whom 
mathematical fi gures have “no other existence in the nature of  things than 
in the mind alone.” In reaction to this claim, Barrow observes that,

if the Hand of an Angel (at least the Power of God) should think fi t to polish 
any Particle of  Matter without Vacuity, a Spherical Superfi ce would appear 
to the Eyes of a fi gure exactly round; not as created anew, but as unveiled and 
laid open from the Disguises and Covers of its circumjacent  Matter. Nay I 
 will go farther and affi  rm that whatsoever we perceive with any sense is  really 
a mathematical Figure, though for the most part irregular; for  there is no 
reason why irregular fi gures should exist everywhere, and regular ones can 
exist nowhere. Moreover if it be supposed that Mathematical  things cannot 
exist,  there  will also be an end of  those ideas or types formed in the mind, 
which  will be no more than mere Dreams or the Idols of  Th ings no where 
existing. (77)

Th e similarity between Barrow’s (1683–86) and Galileo’s (1890–1909, 4:52) 
views concerning the relation between mathematical and physical truths is 
truly striking. In the lines just quoted, Barrow claims, exactly like Galileo 
in the Dialogue, that all physical objects possess a geometrical shape, and 
although  these are “for the most part irregular,”  there is no reason to exclude 



 r ea di ng the book of natu r e 47

a priori that regular fi gures can be found in nature. Moreover, even if a 
mathematical entity does not fi nd instantiation in the physical world, it still 
exists in the mind of God, who, as both Galileo and Barrow claim, quoting 
the Platonizing Book of Wisdom, “arranged all  things by number, weight 
and mea sure.”

notes

I wish to thank the participants of the Work- in- Pro gress Seminar of the 
Center for the History of Philosophy and Science of Radboud University 
Nijmegen (Delphine Bellis, Hiro Hirai, Klaas Landsman, Christoph Lüthy, 
Elena Nicoli, Kuni Sakamoto, Francesca Vidotto, and Rienk Vermij) for 
their comments on an earlier draft  of this paper, as well as Antonio Cimino 
for his elucidation of Husserl’s interpretation of Galileo.
 1. Galilei 1974, 153 (= 1890–1909, 8:197). As Ofer Gal and Raz Chen- 
Morris have recently observed  there is a striking resemblance between this 
passage and a statement found in the dedicatory letter of Kepler’s Ad Vitel-
lionem Paralipomena: “And I have not satisfi ed my soul with speculations 
of abstract Geometry, namely with pictures, ‘of what  there is and what is 
not’ to which the most famous geometers of  today devote almost their en-
tire time. But I have investigated the geometry that, by itself, expresses the 
body of the world following the traces of the Creator with sweat and heavy 
breath” (Dedication to the Emperor, in Kepler [1937], quoted in Gal and 
Chen- Morris [2012]).
 2. A similar point is made by Galileo in the “First Letter on Sunspots”: 
“Th e latter [= the philosophical astronomers], besides the task of saving the 
appearances in what ever way necessary, try to investigate, as the greatest 
and most marvelous prob lem, the true constitution of the universe,  because 
this constitution exists, and it exists in a way that is unique, true, real and 
impossible to be other wise” (Galilei and Scheiner 2010, 95).
 3. I have dealt with Galileo’s use of the topos of the book of nature in 
Palmerino (2006). On the same topic see, among  others, Stabile (1994), 
Howell (2002), and Biagioli (2003).
 4. For Galileo’s theory of “adumbratio,” see Stabile (1994, 54–56).
 5. Compare Galilei (1974, 36) with Galileo’s answer to Di Grazia: 
“Every body has  free authority in the imposition of names and in the defi ni-
tion of terms, as similar defi nitions are nothing  else than abbreviations of 
speech” (1890–1909, 4:697).
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 6. I cannot agree with Rivka Feldhay (1998), according to whom Sal-
viati’s answer to Simplicio is “surprisingly poor” if analyzed against the 
background of the Re nais sance debate de certitudine mathematicarum.
 7. For a critique of the Aristotelian notion of perfection, see also Gali-
lei (1890–1909, 4:446; 6:319–20; 7:35; 11:149–50).
 8. Galilei (1967, 117). See also page  60 (“natura nihil frustra facit”), 
page 117 (“nature . . .  does not act by means of many  things when it can do 
so by means of few”), and page 123 (“frustra fi t per plura quod potest fi eri 
per pauciora”).
 9. For Galileo’s views on the composition of space, time, and  matter 
see Palmerino (2011).
 10. Barrow’s claim that “a mathematical number has no existence 
proper to itself” is quoted in Sepkoski (2007, 100).
 11. Th is is what Gassendi denies in his Disquisitio metaphysica, seu 
dubitationes et instantiae adversus Renati Cartesii metaphysicam: “at non 
est dicendum . . .  triangulum esse reale quid, veramque naturam praeter 
intellectum” (Gassendi 1658). Th is passage is quoted and discussed in Osler 
(1995).
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Considerations on the nature of science played a very 
impor tant role in Francis Bacon’s proj ect for a  Great Instauration. On a gen-
eral level, his approach was foundational; knowledge was required to grow 
like a pyramid, on a solid basis of natu ral history, sustaining physics and 
metaphysics: “For knowledges are as pyramides, whereof history is the ba-
sis: so of Natu ral Philosophy the basis is Natu ral History; the stage next the 
basis is Physic; the stage next to the vertical point is Metaphysic.”1

Furthermore, Bacon preserved the pyramidal model in his detailed in-
vestigations into the nature of par tic u lar sciences. His claim is that in order 
for something to become scientia, it has to be constructed on a properly or-
ga nized natu ral and experimental history.2 Given the importance and cen-
trality of this concept, it is not surprising that Bacon wrote extensively about 
the nature, characteristics, and ways of composing such a well- organized 
and properly recorded natu ral and experimental history.3 In one such meth-
odological text on the subject, one can fi nd the following precept:4 “every-
thing to do with natu ral phenomena, be they bodies or virtues, should (as 
far as pos si ble) be set down, counted, weighed, mea sured and defi ned. For 
we are  aft er works, not speculations, and, indeed, a good marriage of Phys-
ics with Mathe matics begets practice [Physica autem et Mathematica bene 
commistae, generant Practicam]” (OFB, 6:465–66).

Th is is surely a puzzling set of requirements. First,  there is a quantitative 
requirement; a proper natu ral and experimental history would contain 
quantitative descriptions of bodies and virtues. Th e resulting natu ral history 
 will not be simply a se lection of facts, but a well- ordered collection of 
mea sured quantities.5 As Graham Rees and Cesare Pastorino have already 

2

“the marriage of physics with mathe matics”
Francis Bacon on Mea sure ment, Mathe matics, and the 
Construction of a Mathematical Physics

da na ja lobea n u
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shown, mea sure ment is a very impor tant feature of Bacon’s natu ral his-
tory; it is what distinguishes it from its humanist pre de ces sors (Rees 1985; 
1986; Pastorino 2011a). In theory, at least, Bacon envisaged natu ral and 
experimental histories composed of numerical results, or  tables, obtained 
through the careful “weighing” of experimental and instrumental results.6 
In practice, however, Bacon’s natu ral histories are rarely openly quantitative; 
and with few notable exceptions they do not contain numerical  tables. Th is 
makes even more puzzling Bacon’s reference to the “good marriage,” the 
good mixture of mathe matics and physics necessary in order to generate 
practice. Th e producing of “works” belongs, for Bacon, to the realm of op-
erative science; and it is only pos si ble once the “science” itself has taken off  
the ground. A well- measured and ordered natu ral history becomes, in this 
case, a prerequisite for, and not the result of the “marriage” in question. Can 
this striking claim refer, therefore, to a peculiar, Baconian form of mathe-
matical physics? What does Bacon mean  here by “physics,” “mathe matics,” 
and their “marriage”?

In a slightly  later methodological text, dealing this time with the place 
of mathe matics in a general tree of science, one can fi nd a similar phrase: 
“Physics and Mathe matics produce Practice or Mechanics” (SEH, 4:369, 1:576 
[Physicam et Mathematicam generare Practicam sive Mechanicam]). Th is 
time, however, the phrase is attributed to Aristotle and given as a quote. In 
fact, Bacon refers  here to a key passage from a well- known and highly de-
bated treatise, the pseudo- Aristotelian Mechanica.7 Th e passage itself was 
subject to many interpretations (and diff  er ent translations) in the second 
part of the sixteenth  century, mainly  because it addresses directly the pos-
sibility of using mathe matics to treat prob lems of physics, such as “the mov-
ing of heavy bodies by art, for  human benefi t” (Berryman 2009, 106).8 Th e 
passage refers, more precisely, to the intermediary status of mechanical 
prob lems that “share in both physical and mathematical speculations,”9 and 
invites refl ection upon the status of mechanics as a mixed- mathematical 
science. It portrays mechanics as resulting from a “consent” or “collabora-
tion” of physics and mathe matics. Th e precise nature of such a consent 
and collaboration was the subject of heated debates involving mathemati-
cians, natu ral phi los o phers, and prac ti tion ers of mechanical arts.

Th us, when Bacon announced a discussion on the “marriage of Physics 
and Mathe matics” he was most prob ably taking a stand in an ongoing 
debate, relative to what we call  today the “mathematization of nature.” Th e 
purpose of this chapter is to reconstruct Bacon’s position: his original and 
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somewhat idiosyncratic views on “physics,” ”mathe matics,” and “mechan-
ics,” and his par tic u lar way of describing the consent and collaboration be-
tween the two disciplines. My claims are the following: (1) Bacon did take a 
position in the wider debate over the status of mixed- mathematical sciences 
and the possibility of a mathematical physics; (2) his position was charac-
terized by an instrumental and practical understanding of mathe matics; and 
(3) he saw the “marriage of physics and mathe matics” as a prerequisite to the 
emergence of a quantitative science of nature. In other words, I claim that 
 there is a Baconian version of “mathematical- physics,” which becomes evi-
dent if we reconstruct more carefully what Bacon and his contemporaries 
meant by “physics” and “mathe matics” and by the vari ous forms of collabo-
ration and consent between the two disciplines.

bacon on mathe matics, mea sure ment, and experimental 
practice: the four idols of baconian scholarship

Any attempt to write about Francis Bacon’s views on the “marriage” of 
physics and mathe matics  faces serious historical and historiographical 
prob lems. For a long time, the history of early modern thought has been 
dominated by the famous Kuhnian divide between proper, “mathematical 
sciences” and the “Baconian sciences.” Presumably originating with Bacon, 
Baconian science was supposed to have a qualitative, preparadigmatic, 
and essentially nonmathematical character. Although this divide has been 
repeatedly refuted in the last two de cades, its lingering echoes pose nu-
merous historiographical and terminological prob lems. Both “physics”10 
and “mathe matics”11 had a fl uid and changeable meaning  until the mid- 
seventeenth  century; the landscape of late sixteenth- century theoretical 
and practical mathe matics is full of subtle complexities of which the histo-
rian of early modern thought should be aware.12 It is only recently that the 
subject has reached outside the borders of the history of mathe matics itself, 
into the wider community of  people interested in early modern science.13 On 
the other hand, Bacon’s thoughts on mathe matics and his proj ect to use 
physics and mathe matics conjointly in order to explore the labyrinth of na-
ture are, perhaps, the least explored of his many unfi nished proj ects. Th is is 
only partly surprising.  Aft er all, the subject has long been obliterated by the 
per sis tence of what I have called elsewhere the four idols of Baconian schol-
arship (Jalobeanu 2013a; 2013b; 2015), namely recurrent general judgments 
of obscure origin and remarkable per sis tence, impermeable to refutation.14
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One of the oldest and most entrenched idols of Baconian scholarship can 
be exemplifi ed by the repeated claims that Bacon disliked and distrusted 
mathe matics.15 Such claims have many features of an idol of the tribe:16 they 
are useful and widespread simplifi cations, based on common received views 
and essentialist historiographical presuppositions. Th ey implicitly attribute 
to “mathe matics” some atemporal essentialist nature, disregarding the his-
torical character and the evolution of mathematical knowledge and math-
ematical disciplines in the sixteenth  century. Th ey have also displayed a 
remarkable per sis tence and re sis tance to refutation.17 Th ey are partly re-
sponsible for the fact that so  little work has been done, to date, to unearth 
the sources of Francis Bacon’s attempts to reform astronomy, astrology, and 
the mechanical arts. A second, related category of idols originates in a too 
literal interpretation of Bacon’s meta phors, especially his celebrated meta-
phor of the “alphabet of nature.” Since  these idols relate to language and 
interpretation, they display common features with Bacon’s idols of the 
market. Th is category of idols illustrates the power of words over interpre-
tations. Indeed, Bacon repeatedly claims that nature is a labyrinth and the 
explorer of nature a hunter; that every thing in nature results from endlessly 
active and invisible combinations of appetites and motions (i.e., letters of 
the alphabet) that one needs to “become like a child” and learn the abece-
darium of nature in order to be able to perform the work of interpretation. 
He also claims that the results of investigation need to be written down, 
that “experience itself has to be taught how to read and write,” that is, to 
become literate. It is extremely tempting to give such claims a quasiliteral 
interpretation, transforming Bacon’s proj ect of an experimental investiga-
tion of nature into a form of literary pursuit.

A third category of idols can be recognized in the repeated claims that 
Bacon’s science is purely speculative; that Bacon never did experiments but 
only mimicked the language of experimental practice in order to argue for 
what was fundamentally a purely speculative system (Jalobeanu 2013b, 7–8). 
Of the same kind are the claims according to which Bacon’s natu ral history 
was a collection of  recipes and phenomena borrowed from  others and never 
tested, or tried, in practice.  Th ere are many versions of this claim, which are 
recurrent and remarkably per sis tent to refutation. Th eir per sis tence explains 
why relatively  little work has been done to explore Bacon’s natu ral histories 
and to trace their sources and evaluate their originality.18

Last but not least, a fourth category of idols can be recognized in the re-
peated claims that Bacon rejected the physico- mathe matics of Galileo and 
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the mechanics of his contemporaries; that he was isolated among his more 
scientifi cally minded contemporaries, “writing philosophy like a lord Chan-
cellor.”19

What the four categories of idols have in common is a series of as-
sumptions about the nature of mathe matics, the nature of scientifi c enter-
prise, and Francis Bacon’s “isolation” in the scientifi c and philosophical 
community of his day. Each of  these assumptions has been individually 
refuted more than once. Th is chapter does not propose another refutation. I 
would rather use the framework of the four idols of Baconian scholarship as 
a background for a more precise reconstruction of Francis Bacon’s peculiar 
form of mathematical physics.

francis bacon on mathe matics and mea sure ment: 
against the fi rst idol

Francis Bacon gave mathe matics a very impor tant role in his restoration 
of sciences. Mathe matics are said to be “the  great appendix of natu ral phi-
losophy, both speculative and operative” (SEH, 4:369)20 they are “of so much 
importance both in Physics and Metaphysics and Mechanics and Magic” 
(370). As appendices, arithmetic and geometry should function as “hand-
maids” of physics and metaphysics. Th ey have an intermediate but essential 
role in the instauration of sciences.

Meanwhile, since arithmetic and geometry are also “sciences,” and 
parts of philosophy, Bacon argues that they should be constructed accord-
ing to the proper method, on a natu ral historical foundation. Hence it is not 
surprising that in the list of natu ral histories Bacon appended to the end of 
his Instauratio Magna, one can fi nd two natu ral histories of “mathe matics”: 
a history of “the natures and powers of numbers” and a history of “the 
powers and natures of fi gures” (OFB, 11:485). What would the two histo-
ries consist of? One cannot infer much from their titles. However, taken 
together with the other  things Bacon has to say about mathe matics, a cer-
tain amount of reconstruction is pos si ble. If, moreover, we read such 
claims in the wider context of the late sixteenth- century debates over the 
nature of mathe matics, Bacon’s position becomes clearer.  Here is an impor-
tant ele ment in this reconstruction: in the posthumous New Atlantis, among 
the laboratories and  houses of sciences of Solomon’s House, Bacon lists a 
“mathematical  house, where are represented all instruments, as well of geom-
etry as astronomy, exquisitely made” (SEH, 3:164). Mathe matics, therefore, 
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deals with instruments; a collection of instruments is required both to con-
struct mathematical histories and to provide tools for other sciences, par-
ticularly astronomy. Note that for Bacon instruments are not only the tools 
of mixed mathematical sciences, such as the science of astronomy, but also 
of pure mathe matics, such as geometry. Such an instrumental and practical 
view on mathe matics squares with its role as a “handmaid” for physics, and 
with Bacon’s further insistence on the importance of mathe matics for mea-
sure ment and calculus. In De augmentis scientiarum (DA), Bacon mentions 
a  couple of impor tant and yet unsolved prob lems of his days. In arithmetic, 
they are the discovery of “formulas for the abridgment of computation suf-
fi ciently vari ous and con ve nient, especially with regard to progressions.” 
To  these, Bacon claims, “ there is no slight use in Physics” (SEH, 4:370–71). 
In geometry, he also lists a prob lem of mea sure ment, computation, and 
calculus: “the doctrine of solids” (i.e., the prob lem of calculating areas and 
volume of solids).

Bacon’s views on mathe matics are by no means singular at the beginning 
of the seventeenth  century. In fact, in late sixteenth- century  Eng land it was 
quite common to defi ne mathe matics in instrumental terms—as a science 
of mea sure ment and calculation. Equally common was to argue for the uni-
versal propaedeutic value of mathe matics and for its practical applications 
in  every other science. Such views are widespread among the “mathemati-
cal prac ti tion ers”21 of the late sixteenth  century; but they can also be found 
in the works of more traditional mathematicians, especially in the case of 
vernacular mathe matics.22 Th e fi rst En glish translation of Euclid produced 
by Henry Billingsley (with a preface and textual additions by John Dee) is 
well stocked with instructions for constructing geometrical fi gures, with ex-
planations of geometrical instruments and their uses, and with strategies for 
calculating areas and volumes (sometimes in practice, and with approxima-
tion). Th is instrumental pre sen ta tion of geometry receives full- length justi-
fi cation in John Dee’s accompanying preface. Although Dee emphasizes the 
divine nature of arithmetic and geometry, his preface argues at length for 
their use in commerce, navigation, architecture, the art of assaying, mining 
and so on (Billingsley and Dee 1570). He also distinguishes between several 
uses of “vulgar geometry” for mea sur ing, approximation, and, more gener-
ally, for describing the world of physics. A slightly  later En glish Ele ments of 
Geometry, translating Ramus’s geometrical books from Schola Mathematicae, 
begins with the following defi nitions:
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1. Geometrie is the Arte of mea sur ing well
2. Th e  thing propounded to the wel mea sured, is Magnitude
3. Magnitude is a continual quantitie
4. A terme is the end of a magnitude

Th erefore a magnitude is both infi nitely made, continued, and divided 
by  these  things wherewith it is termed (Ramus and Hood 1590).23

Ramus’s defi nitions sketch an instrumental, constructivist, and inductive 
approach to geometry; the book also off ers constructional strategies for 
drawing basic geometrical fi gures, followed by instructions on how to com-
pose, decompose, and mea sure vari ous fi gures.24 Th is attitude to geometry 
is reinforced in Th omas Hood’s “advice to the auditors” of his mathematical 
lectures,25 in which geometry is presented as an essential introduction in 
“mathematical sciences” (mixed mathe matics) but also in “anie  human 
knowledge” (Ramus and Hood 1590).

Similar views on mathe matics can be found in the more complete and 
less idiosyncratic French edition of Euclid, translated by Pierre Forcadel and 
published in 1564.26 Forcadel’s preface argues for the importance of mathe-
matics using the same strategy: on the one hand, the object of mathe matics 
is seen as superior to the objects of any other science; on the other hand, 
Forcadel argues that mathe matics is, in fact, astronomy: “Mathe matics treats 
mainly of celestial business; the motions of the sky, the course of the Sun, 
the Moon and other planets.”27 Again, mathe matics is said to have universal 
practical value for any theoretical and practical knowledge (including gov-
ernment).

Th is universal practical value makes mathe matics a useful tool for the 
treatment of physical prob lems as well. Th is, however, does not mean that 
mechanics, astronomy, and optics become, in any way, mathematical phys-
ics. Th ey are mixed- mathematical sciences, classifi ed  under the general 
heading of geometry.28  Th ere are, however, other ways of dealing with the 
“consent” between mathe matics and physics, one step further along the road 
 toward a “good marriage of physics with mathe matics.” One quite striking 
example of consent and collaboration between mathe matics and natu ral 
philosophy can be found in a composite and peculiar treatise published in 
1571  under the name A Geometrical Practical Treatise Named Pantometria. 
Th e treatise was published by Th omas Digges (1571) and dedicated to Fran-
cis Bacon’s  father, Nicholas. In the dedicatory letter, the treatise is said to 
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contain: “mathematical demonstrations, and some such other rare experi-
ments and practical conclusions.” Th e said “experiments” cover the con-
struction of instruments and technologies for the production of geometrical 
and topographical instruments, devices for calculating lengths, surfaces, and 
volumes, etc. For example, the third book, Stereometria, contains “rules to 
mea sure the Superfi cies and Crasitude of Solide bodies, whereof, although 
an infi nite rote of diff  er ent kindes might be imagines, yet  shall I only entre-
ate such as are both usually requisite to be moten, and also many suffi  ciently 
induce the ingenious to the mensuration of all other Solides, what forme or 
fi gure so ever they beare” (Digges and Digges 1571, 81).

Th e book is a weird mixture of classical Euclidean geometry with practi-
cal prob lems of mea sure ment; it is also a composite work of two En glish 
mathematicians,  father and son.29 Th e “practical” part relating to mea sure-
ment belongs to Leonard Digges and was left  unpublished for the young and 
talented Th omas Digges to complete, among other  things, with a “doctrine 
of . . .  the fi ve Platonicall solids.”30 Th omas Digges’s preface to the reader em-
phasizes not only the practical utility of geometry but also its experimental 
character: geometry is a science of mea sure ment. Due to geometry: “man 
notwithstanding be  here imprisoned in a mortal carkasse, and thereby de-
tained in this most inferior and vilest portion of the universall world, fardest 
distant from that passing pleasant and beautifull frame of celestial orgbes, yet 
his divine minde ayded with this science of Gemoetrical mensurations, 
founde out the Quantities, Distances, courses, and strange intricate mirac-
ulous motions of  these responded heavenly Globes of the Sunne, Moone, 
Planets and Starres fi xed, leaving the precept hereof to his posteritie.”31

Th is science of mea sure ment is seen as having universal applications: it 
can be used to create instruments, to mea sure the land, to navigate, to per-
fect ballistics and fortifi cation, to discuss architecture, or the storage of goods 
(Digges and Digges 1571).32 What is more impor tant, however, is that this 
science is seen as leading to the development of more sophisticated mea-
sur ing instruments and techniques, which, in turn, can perfect the art 
itself. Last but not least, the science of mea sure ment extends beyond the 
traditional list of mixed-mathematical sciences, into natu ral philosophy 
itself. Th omas Digges’s preface claims that one cannot understand Aristotle 
without being a good mathematician,  because “in sundrie of his works also 
of naturall Philosophie, as the Physickes, Meteores, de Caelo & Mundo, &c. 
yee  shall fi nde sundry Demonstratins, that without Geometrie may not 
possibly be understanded.” In other words, this kind of mathe matics would 
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advance the sciences traditionally considered to belong to “mixed mathe-
matics,” but also other sciences, whose mathematical character has not been 
apparent so far.

Francis Bacon’s arguments for the importance of mixed mathe matics are 
similar. He begins with a general defi nition: “Mixed Mathematic has for its 
subject some axioms [Axiomata] and parts of natu ral philosophy [portiones 
physica], and considers quantity in so far as it assists to explain, demonstrate, 
and actuate  these.” Following the defi nition, Bacon draws a list of mixed- 
mathematical sciences, presenting them as “parts of nature” that cannot be 
comprehended without the aid of mathe matics: “For many parts of nature 
can neither be in ven ted [comprehended] with suffi  cient subtlety [nec satis 
subtiliter comprehendi], not demonstrated with suffi  cient perspicuity, nor 
accommodated to use with suffi  cient dexterity, without the aid and the inter-
vention of Mathematic: of which sort are Perspective,  Music, Astronomy, 
Cosmography, Architecture, Machinery and some  others” (SEH, 4:371).

If Bacon’s list of mixed-mathematical sciences is quite traditional, his 
view on the role of mathe matics in physics is not quite so, although it is 
strikingly similar to Digges’s views on the  matter. Bacon claims that  there 
should be a dynamic interplay between physics and mathe matics; that with-
out this no pro gress can be made. Moreover, he envisages the situation in 
which new parts of physics  will require fresh assistance from mathe matics. 
“In Mixed Mathe matics I do not fi nd any entire parts now defi cient, but I 
predict that hereaft er  there  will be more kinds of them, if men be not idle. 
For as Physics advances farther and farther  every day and develops new 
axioms, it  will require fresh assistance from Mathematic in many  things, 
and so the parts of mathe matics  will be more numerous [eo Mathematicae 
opera nova in multis indigebit, et plures demum fi ent Mathematicae Mixtae]” 
(SEH, 4:371).

In what way does physics require the assistance of mathe matics? Bacon’s 
general answer to this question is “mea sure ment.” In order to construct a 
natu ral history on which one can build a sound physics, one has to mea sure, 
count, and weigh instances. Th is involves instruments and experimental 
techniques; it also involves mathematical instruments and techniques of cal-
culus. All  these are used in “mea sur ing, weighing and counting”; observa-
tions and experiments further recorded in natu ral history and useful for 
the construction of physics. But this “mea sur ing of nature” is, for Bacon, a 
more general concern. For example, he states that “in  every inquiry into 
nature we must note the Quantity or, as it  were, the dose of body needed to 
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produce a given eff ect, and add a dash of guidance concerning Too Much or 
Too  Little” (OFB, 11:383).

It is clear from such statements that Bacon also has methodological and 
theoretical concerns associated with the very pro cess of mea sure ment. Th is 
is supplemented, in the second book of the Novum Organum, by a se lection 
of instances destined to provide “general and catholic observations” (OFB, 
11:419) and more general guidance for the investigation of nature. Such are, 
for example, what he calls mathematical instances or instances of mea sure 
(OFB, 11:367). Th ey are explic itly introduced in order to solve the prob lem of 
“inaccurate determination and mea sure ment of the powers and actions of 
bodies.” Th ey underline a general theory of mea sure ment: “Now the powers 
and actions of bodies are circumscribed and mea sured  either by point in 
space, moment of time, concentration of quantity, or ascendency of virtue, 
and  unless  these four have been well and carefully weighed up, the sciences 
 will perhaps be pretty as speculation, but fall fl at in practice” (OFB, 11:367).

 Th ere are four such instances, and they are extremely diverse: some are 
operations or operational procedures governing the investigation of a given 
nature; some are experiments destined to circumscribe and mea sure the 
range of a given phenomenon;  others are attempts to set down instruments 
or techniques for mea sur ing distances, time, or the range of a certain virtue 
or quality. Among the mathematical instances, some are even called “in-
stances of quantity” or “doses of nature” (OFB, 11:381–83). All  these in-
stances provide techniques and examples of mea sur ing; together, they seem 
to delineate a general theory of mea sure ment of the “powers and actions of 
bodies.” What they mea sure, however, is a bit more complicated, and relates 
to the peculiarities of Bacon’s physics. Disentangling the meaning and struc-
ture of Bacon’s physics is a prerequisite to understanding what he meant 
by the “marriage of physics and mathe matics.” Th is is the subject of the 
next section.

physics and the “alphabet of nature”: bringing 
physics closer to mathe matics and the second 
idol of baconian scholarship

For Bacon, physics deals with three large domains of real ity: “the princi ples 
of  things,” “the structure of the universe,” and the realm of phenomena, 
that is, “all the va ri e ties and lesser sums of  things” (SEH, 4:347). His inves-
tigation focuses especially on this third domain, called “diff used physics” 
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[Physicam Sparsam, sive de Varietate Rerum] (SEH, 1:551) and said to be “a 
gloss or paraphrase attending upon the text of natu ral history” (SEH, 4:347; 
see also OFB, 4:83). Th is “gloss” has two parts: the concrete and the abstract 
physics.33 Th e fi rst is barely distinguishable from natu ral history. Indeed, 
Bacon’s concrete physics has the same objects and the same structure as his 
natu ral history.34 It deals with “the heavens or meteors, or the globe of earth 
and sea, or the greater colleges, which they call the ele ments, or the lesser col-
leges or species, as also with pretergeneration and mechanics” (SEH, 4:347).

Concrete physics is a “gloss” on natu ral history  because it simply adds 
causal explanations to the “facts” of natu ral history. In some cases, such as 
mechanics, concrete physics is already a mixed-mathematical science. What 
about the other parts of concrete physics? Interestingly, Bacon illustrates the 
requirements of concrete physics with his own proj ect of reforming the “sci-
ence” of the heavens. He claims that: “Among  these parts of Physic that 
which inquires concerning the heavenly bodies is altogether imperfect and 
defective,” and has been ill handled in more than one way. On the one hand, 
astronomy— although built on phenomena— has transformed the science of 
heavens into a study of an abstract and simplifi ed “system of machinery ar-
bitrarily devised and arranged to produce [motions]” (SEH, 4:349).35 In ad-
dition, astronomers have done a “lax and careless job” (OFB, 6:167)36 when 
they made observations and supplemented the lack of data with ad hoc as-
sumptions, dogmas, and theories (ibid.). By contrast, Bacon’s proposal is to 
reform both astronomy and astrology in order to build a proper physica 
coelestis. A concrete physics of heavens would have to study the “substance, 
motion and infl uence of the heavenly bodies as they  really are,” and also 
their “physical reasons” (SEH, 4:348).37 It would be built on a proper natu-
ral history of the heavens, carefully compiled and properly mea sured.38 Such 
a natu ral history would not limit its inquiries to the “exterior” of the heav-
enly bodies, but would also inquire into their “interiors” [viscera]. Bacon rec-
ommends a general inquisition, covering “physical  causes, as well of the 
substance of the heavens both stellar and interstellar, as of the relative ve-
locity and slowness of the heavenly bodies; of the diff  er ent velocity of mo-
tion in the same planet; . . .  of their progressions, stationary positions, and 
retrogressions; of the elevation and fall of motions in apogee and perigee; of 
the obliquity of motions,  either by spirals . . .  or by the curves which they call 
Dragons; of the poles of rotation” (SEH, 4:348).

Bacon claims that such a general inquiry has never yet been performed, 
mainly  because the received astronomy has replaced the real prob lems of a 
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celestial physics with simplifi ed prob lems of calculus and prediction. On the 
other hand, he seems to be aware of some of the diffi  culties involved in such 
an investigation; for example, how diffi  cult it is to get precise astronomical 
observations.39 He recommends “estimates” [aestimativas] (OFB, 11:466) and 
“comparative mea sure ments” 40 when “precise proportions are not avail-
able” (467; see also 6:167, 169). He mentions the methods of distance mea-
sure ment currently in use in astronomy and the need for “other aids to be 
devised for this  matter, which  human industry may contrive” (OFB, 6:169). 
Such diffi  culties of mea sure ment become even greater if one takes into con-
sideration the part of celestial physics that deals with the nature and com-
position of heavenly  matter, namely the “substance of the heavenly bodies 
and  every sort of quality, power and infl ux . . .  what is found in the bowels 
of nature and is actually and  really true” (OFB, 6:111).41 What is found in the 
“bowels” and “viscera” of nature are the appetites and motions of  matter 
and what Bacon calls “confi gurations,” or “schematisms” of  matter; and 
 these are precisely the ele ments of his abstract physics.42 Bacon calls them 
the letters of the alphabet of nature,43 “by which all that variety of eff ects 
and changes which we see in the works of nature and art is made up and 
brought about” (SEH, 5:425).

How can such primordial, constitutive ele ments of the universe be sub-
ject to mea sure ment and quantitative natu ral history? Bacon clearly states 
that  these “letters” of the alphabet of nature take place in the “recesses of 
nature” (SEH, 4:356); that they are “imperceptible” and “intangible” (OFB, 
11:351); and that all information about this level of real ity “comes via reduc-
tion” [per Deductionem procedit] (ibid.). On the other hand, the purpose of 
abstract physics is also precise mea sure ment. Th e explorer of nature should 
fi nd ways to “call upon nature to render her account” (SEH, 5:427). Th e in-
quisition into  simple motions, sums of motions, confi gurations, and the 
other ele ments of the abstract physics should be pursued in such a way that 
“they are not diff use [vagae], lacking in rigour, and in manner intellectually 
satisfying, but useless in practice. Th is is why we must get closer to the mathe-
matics, namely to mea sures and scales of motions [Quamobrem acceden-
dum propius ad mathematica, sive mensuras & scalam motuum], without 
which, well counted and weighed and defi ned the doctrine of motions may 
falter and not be reliable translated into practice” (OFB, 13:210–11).44

How is the mea sure ment pos si ble if the appetites, motions, and confi gu-
rations of nature are not accessible to the senses? Th is is where Bacon’s pro-
gram seems to break down, a wide gap separating his ideal of “getting closer 
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to mathe matics” from his metaphysics of  simple and compound motions. 
Furthermore, Bacon gives no composition rules for his language. Even if we 
know the letters, we do not have a grammar to put the words together.

Th is is precisely the point at which the infl uence of the second idol of 
Baconian scholarship was persuasive and long lasting. To date,  there is a 
wide gap between scholars interested in Bacon’s speculative metaphysics,45 
 those focusing on Bacon’s method, and  those mainly intrigued by the struc-
ture and composition of Baconian natu ral histories. Th e three groups tend to 
focus on diff  er ent texts, exploiting the corresponding apparent divide in 
Bacon’s writings between speculative metaphysics of  matter and seemingly 
experimental natu ral history. However, a less literal reading of Bacon’s meta-
phorical language about the alphabet and the language of nature might show 
us that the break results in a far smaller gap than it had appeared to so far.

In fact, Bacon does have an answer to the prob lem of bringing abstract 
physics closer to mathe matics. Th e answer is in the adoption of a mixed 
strategy: on the one hand, he proposes an experimental approach and 
par tic u lar kinds of “reductive experiments” [experimenta deductoria] (OFB, 
13:215) that are able (in princi ple) to establish connections between the in-
visible  causes and the vis i ble aspects of the phenomena. On the other hand, 
he elaborates a reductionist strategy based on a minimal list of  simple mo-
tions, or appetites. Th e list is provisional and subject to further corrections.46 
 Th ere can be other  simple motions, or  there can be less  simple motions; or 
some  simple motions might be diff  er ent than initially stated. Th is clearly 
happens due to some form of empirical and experimental input. Bacon’s 
reductionist strategy is quite sketchy; but we have enough of it to see that 
for him the prob lem of inferring per Deductionem and the theory of mea-
sure ment  were closely intertwined; and that they have a strong experimen-
tal component. It remains to explain what  these “reductive experiments” 
[experimenta deductoria] are and in what way can they serve the proj ect of 
bringing physics “closer” to mathe matics.

mea sure ment in practice: experiments, instruments, 
and levels of precision

A characteristic feature of Baconian experimentation is the way in which 
Bacon borrows observations and experiments of more traditional natu ral 
histories and turns them into experimental series aiming at precise quanti-
tative mea sure ments.47 He can begin, for example, with Pliny’s observation 
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that sailors once obtained freshwater on a ship from fl eeces of wool hung 
around the sides of the ship at night. He “tries” this by simply putting a 
“woolen fl eece” on the ground “for a long while” and observing that it gains 
weight “which could not happen  unless something pneumatic had con-
densed into something with weight” (OFB, 13:141). However, such a trial is, 
for Bacon, just the beginning of an entire series of experiments one can fi nd 
scattered through his writings, all involving the study of the same phenom-
ena: the unusual capacity of the porous fi bers of wool to condense air into 
 water. One such experiment is re-creating the conditions on Pliny’s ship by 
hanging a pack of wool in a deep well, just above the level of the  water.  Here 
is how Bacon recorded the result: “I have found that in the course of one 
night the wool increased to fi ve ounces and one dram; and the evident drops 
of  water clung to the outside of the wool, so that one could as it  were wash or 
moisten one’s hand. Now I tried this time and time again and, although the 
weight varied, it always increased mildly” (OFB, 13:141).

We have, therefore, a mea sure ment and a quantitative result. Mark that 
Bacon seemed to have been aware of several practical prob lems of mea sure-
ment, such as the slight variations of the results in repeated  trials and the 
importance of giving an estimate as the mean value and the quantitative 
result of the experimental series. He also seemed to have been particularly 
interested by what happens if one varies the experimental conditions of one’s 
experiment. Bacon rec ords repeated  trials with the wool placed on the 
ground, hung in a well at vari ous distances from the  water, and placed on 
the top of a closed wooden vessel containing vinegar. In each case, wool is 
instrumental in producing (or perhaps facilitating) a pro cess of condensa-
tion of air (or vapors) into  water (or liquid). In other words, Bacon has 
transformed an ancient, natu ral historical observation into a technology. 
Furthermore, by mea sur ing diff  er ent quantitative results according to 
diff  er ent external conditions, Bacon points out how such a technology can 
be further developed into an instrument. One can use the capacity of wool 
to condense vapors in order to create an instrument mea sur ing the proper-
ties of the surrounding air. Air is more prone to condensation in closed 
spaces, in cold, near the  water,  under certain infl uences of the stars, and so 
on. Th e “woolen instrument” can mea sure the dispositions of air to conden-
sate by translating them into units of weight. In  Century IX of the posthu-
mous Sylva sylvarum, such experiments are used in a large- scale program 
of mea sur ing the qualities of the air in a given spatial region. In order to 
fi nd out, for example, which part of a property has the healthier air, one has 
to place weather glasses and packs of wool in vari ous locations throughout 
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the property, rec ord simultaneous results, and draw  tables of  these proper-
ties of air. It is impor tant to note that this experimental research program is 
developed before one knows exactly what one is measuring— weather glasses 
and packs of wool are simply used conjointly to fi nd out more about prop-
erties of air in a given region without knowing precisely what  these proper-
ties are ( whether what we mea sure is the temperature and humidity or 
 whether we mea sure the way air captures and transmits the infl uences and 
radiations of the stars).

Such experiments are precisely what Bacon calls experimenta deducto-
ria or instantias deductoria (OFB, 11:350): they fi gure, for example,  under the 
heading Summonsing Instances in the second part of Novum Organum. 
Summonsing Instances are experiments capable of reducing the impercep-
tible to the perceptible [deducunt Non- Sensibile ad Sensibile]. A par tic u lar 
kind of such reductions occurs precisely in situations such as  those described 
earlier: “It is evident that air, spirit and suchlike  things which are fi ne and 
subtle in their entirety cannot be seen or felt so that reductions are absolutely 
necessary when inquiring into them.” 48 Similarly, “subtler textures and con-
fi gurations of  things . . .  are imperceptible and intangible. Th e consequence 
is that information about  these also come via reduction [per Deductionem]” 
(OFB, 11:350–51). Th e way in which such invisible eff ects are made vis i ble is 
through instruments that reduce the variations of mea sured properties to 
variations of vis i ble properties: weight (in the case of the pack of wool) or 
length (in the case of the weather glass).49 Repeated experiments  under diff  er-
ent external conditions and simultaneous experiments amount to calibrating 
the instrument. One can argue that this is exactly what Bacon is  doing when 
placing the pack of wool into the deep well, into a situation of maximum 
humidity, and recording the increase in weight in this situation. He is thus 
determining the limits, or the range of variation, of a given property or 
phenomenon. Furthermore, by requiring the per for mance of simultaneous 
mea sure ments with packs of wools and weather glasses, Bacon seems to go 
one step further into the creation and calibration of his instruments.50

Th e practical pro cess of calibrating instruments is doubled, in Bacon’s 
case, by theoretical concerns regarding the accuracy and precision of such 
instruments. We have seen already that Bacon distinguishes (in the case of 
astronomical observations) between precise mea sure ments and rough es-
timates or comparative mea sure ments: “where precise proportions are not 
available to us we must for sure fall back on rough estimates and comparisons, 
as, for instance (if we happen to distrust the astronomers’ calculations of 
distances) that the Moon stands within the Earth’s shadow; that Mercury is 
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above the Moon, and the like” (OFB, 11:467). A third category is introduced 
for practical purposes: the “setting down the extremes . . .  where average 
proportions are not available, let us set down the extremes; for instance that 
a weaker loadstone  will lift  so much weight relative to the weight of the 
stone itself, whereas one with the greatest virtue  will lift  sixty times its own 
weight” (OFB, 11:467). What we have  here is an attempt to determine the 
range of the virtue  under observation. In the case of the woolen instrument, 
this  will determine the maximum and minimum of a scale. In the case of 
magnetic virtue, setting down the extremes is equivalent with determining 
the orb of virtue of a par tic u lar magnet and the proportion between mag-
netic virtue and size (weight). More generally, Bacon indicates as a major 
mode of operation [modus operandi] for  every experiment, the determina-
tion of “how much or dose in nature: what of distance, which is not unfi tly 
called the orb of virtue or activity; what of rapidity or slowness; what of short 
or long delay; what of the force or dullness of the  thing; what of the stimulus 
of surrounding  things” (SEH, 4:357). When moving from the “main eff ect” 
to the “stimulus of surrounding  things” we are already in deep  waters in 
terms of theory of mea sure ment,  because this involves distinguishing 
between the variation of what is currently called the major pa ram e ter and 
the additional infl uences of the external conditions. In some cases,  these are 
small or can be minimized. But Bacon is concerned with all sorts of situa-
tions in which the supplementary infl uences coming from external condi-
tions are pres ent and cannot be neglected. Much remains to be done before 
Bacon’s experimental research programs  will be seriously investigated. Sub-
stantial work in this area has been constantly jeopardized by the third idol 
of Baconian scholarship, that is, the strong entrenched belief in the quali-
tative nature of Bacon’s physics. As the examples discussed so far clearly 
indicate,  there is  little truth attached to such claims. Quite on the contrary: 
Bacon’s experiments show a permanent preoccupation for obtaining mea-
sure ments of increasing precision and  tables of quantitative results.

a theory of mea sure ment: meager  tables, 
complex  tables, and successful approximations

In what way does all this pro cess of experimentation and mea sur ing bring 
physics closer to mathe matics? Is Bacon’s “marriage of mathe matics with 
physics” a mere attempt to obtain precise, numerical results? Th e purpose 
of the fi nal section of this chapter is to show that Bacon’s theory of mea sure-
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ment is more complex than that; that it has techniques for transforming lim-
its into estimates and estimates into precise mea sure ments. In order to do 
this, I  will turn to another example of “reductive experiment,” Bacon’s much 
discussed  table of densities.51

Th e experiment is designed in the following manner: two identical sil-
ver boxes of a cubic shape are fi lled respectively with equal volumes of vari-
ous substances. Th ey are subsequently weighed with a balance to determine 
their relative densities. Th e etalon in the experiment is gold—so, the fi rst 
mea sure ment amounts to mea sur ing, with a balance, the relative weight of 
a given substance with res pect to the same volume of gold. By fi lling the 
second cube with  every pos si ble substance able to fi ll a cubic space, Bacon is 
able to draw a  table of densities expressed numerically, in grains. In princi-
ple, as has been said, this  table of densities is not only a quantitative (or, 
rather, numerical) experiment, but it might also be given as an example of 
a good natu ral history; that is, facts carefully weighed, mea sured, and re-
corded (Pastorino 2011b). However, this is not what Bacon claims. He 
claims that the  table reveals “many unexpected  things” and shows the lim-
its of our knowledge (OFB, 11:353). He also claims the  table is “meager” [in-
digestissima]. It is incomplete (lacking entries for numerous substances that 
cannot be reduced to the cubical volume). It is also full of unexplained gaps 
(results are not ranged in a progressive series,  etc.). Bacon also seems to 
have recognized that such a  table is highly unreliable. For example, the sub-
stances entered in the  table on a par tic u lar position can exist in more than 
one state. Metals, for example, can be solid blocks, but can also be grinded 
in powder, can rust and produce a special kind of powder through oxida-
tion, can be melted and mixed with other metals, and so on. In addition, all 
tangible bodies might be, in themselves, subject to condensation  under 
certain conditions:  will their place in the  table change in this case? Bacon 
lists in Sylva sylvarum and Historia densi et rari (HDR) numerous examples 
in which condensation seems to take place (rusting metals, swollen leaden 
statues, condensations by fi re,  etc.). He comes up with another  table that 
compares the weight of similar substances occupying the same volume in 
two cases: when substances are in their “natu ral state” and when they are 
reduced to powder, rust, or distilled solutions. By contrast with the fi rst 
 table, the second is much more complex and introduces into discussion at 
least one more pa ram e ter; namely, the way in which powders and solutions 
 were produced, in the fi rst place. Obtaining equal volumes of crude powder 
by grinding, powder obtained through the rusting of a metal, or powder 
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obtained through more complex chemical procedures  will change the nu-
merical values in the fi nal  table. So the second  table is a very complex object, 
merely sketched, and never fully developed. Furthermore, Bacon claims that 
both  tables (the fi rst, simpler one, and the second, more complex, one) are 
“pretty meager”:

Th e only precise  table of bodies and their openings [dilatation] would be one 
which displayed the weight of the individual bodies  whole fi rst, then of their 
crude powders, next of their ashes, limes and rusts; next of their amalgama-
tions, then of their vitrifi cation (in  those capable of vitrifi cation) then of their 
distillations (once the weight of the  water they are dissolved in was taken 
away) and of all other alterations of the same bodies; so that in this manner 
a judgment might be formed of the openings of bodies and very close- knot 
connections of the nature in its  whole state. (OFB, 13:59)

What Bacon seems to be saying is that both  tables are rough estimates; nei-
ther is fi ne- grained enough to allow an ordering of substances according to 
the relative density in such a way that the results are “precise enough” to 
answer the questions raised thus far. Putting them together, however, might 
result in a fi ner grained  table/ordering of substances according to their den-
sities. Th e resulting  table  will have more entries, fi lling some of the gaps 
found in the fi rst  table. So, for the purpose of representing with the help of a 
 table the wide range of densities in nature, the two  tables taken together can 
be considered as more “precise” (fi ne- grained) than the fi rst one alone. Th is 
degree of precision can also be increased. Indeed, Bacon sketches a full ex-
perimental program that results in a multiplication of  tables: the experiment 
 will amount to mea sur ing the relative weights of equal volumes of substances 
in all the above- mentioned states of powder and distilled liquors, obtained 
through consistently applying the same experimental procedures. Th e envis-
aged result  will be a precise (fi ne- grained enough)  table of bodies and their 
openings (their vari ous states of aggregation) and a more fi ne- grained repre-
sen ta tion of the general scale of densities in the universe.

conclusion

Th e purpose of this chapter was to reconstruct Bacon’s original and some-
what idiosyncratic views on the consent and collaboration between physics 
and mathe matics. I have shown fi rst that his instrumental and practical 
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conception of mathe matics was not singular at the beginning of the seven-
teenth  century, and that his attempts to extend the collaboration of mathe-
matics and physics beyond the received realm of mechanical practices, 
into more general questions of a celestial physics, for example,  were shared 
by many of his contemporaries. I also have shown that by defi ning mathe-
matics as a science of quantity and defending the preeminence of arithmetic 
as a science of quantity Bacon was also in good com pany. Perhaps we can 
even see his views on mathe matics as a way of taking a stand in a wider 
con temporary debate over the nature of physics, mathe matics, and mechan-
ics. For this, however, a wider contextual reconstruction would have been 
required. I have shown in the third and fourth sections of this chapter that 
Bacon saw the “marriage of physics and mathe matics” as a prerequisite to 
the emergence of a quantitative science of nature. He was not simply in-
terested in mea sur ing, computing, and registering properties of vis i ble 
phenomena. His experimental program shows awareness of the role of es-
timates, approximations, and, more generally, of the need for a theory of 
mea sure ment in physics. I have shown how, for Bacon, experiments  were 
used to devise technologies, instruments, and experimental research pro-
grams destined to bring natu ral phenomena into a form that  will make the 
marriage of mathe matics and physics pos si ble. Bacon devised a methodical 
way of getting “closer to mathe matics” through experimental procedures 
destined to discover new instruments and “reductive experiments.” Such 
experiments are used, in turn, to devise a complex program of mea sure-
ment of increasing precision: from “setting down de extremes” to compara-
tive mea sure ment and eventually to precise proportion. At each step along 
the way, new experiments are added to the series in order to compare and 
refi ne the previous results. Th e ideal, fi nal result of  these procedures would 
be a complex  table with many columns, each column containing numerical 
results. To the untrained eye, the complete  tables resulting from the exam-
ple discussed  here would be indistinguishable from astronomical  tables, 
for example. In other words, the results of such experimental research pro-
grams look very much like mixed mathe matics. Without being Galilean 
science, we have a mathematical inquiry into nature in which physics has 
not been transformed into mathe matics, but it has been put  under the form 
of mixed mathe matics. Th is, I claim, is what Bacon means by the marriage 
of mathe matics and physics. Th is is also, I think, the very purpose of Baco-
nian science, the driving force  behind his painstaking eff orts to mea sure, 
weigh, and experiment with nature.
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abbreviations

al Th e Advancement of Learning (OFB 4)
ann Abecedarium novum naturae (OFB 13)
da De augmentis scientiarum (SEH 1), En glish translation (SEH 4 and 5)
dgi Descriptio globi intellectualis (OFB 6)
hdr Historia densi et rari (OFB 13)
hne Historia naturalis et experimentalis (OFB 12)
hvm Historia vitae et mortis (OFB 12)
ofb Rees, G., and L. Jardine, eds. 1996–2006. Th e Oxford Francis Bacon.
phu Phenomena universi (OFB 6)
seh Spedding, J., R. L. Ellis, and D. D. Heath, eds. 1857–74. Th e Works of Fran-

cis Bacon, Baron of Verulam, Viscount St. Alban, and Lord High Chancel-
lor of  Eng land

notes

 1. (AL, 85). In the  later DA Bacon revised the passage in a signifi cant 
manner: he placed at the basis “history and experience” and claimed that 
“sciences” in general should follow this pyramidal pattern (SEH, 4:361; SEH, 
1:561 [Sunt enim Scientiae instar pyramidum, quibus Historia et Experien-
tia tanquam basis unica substernuntur; ac proinde basis Naturalis Philoso-
phiae est Historia Naturalis. Tabulatum primum a basi est Physica; vertici 
proximum Metaphysica]).
 2. Bacon uses the term scientia in a fairly traditional manner, to mean 
demonstrative, universal knowledge, as opposed to historia, which treats 
of “individuals.” He claims that natu ral history should serve as the basic 
material or “prime  matter” of philosophy (see SEH, 1:501–2; OFB, 11:37, 39; 
SEH, 5:510–11; and SEH, 1:494ff ).
 3. Th e nature, structure, and princi ples of organ ization of Baconian 
natu ral history are currently the subject of contention and debate among 
scholars. It is perhaps fair to say that  aft er a long period of neglect, in which 
it was considered a mere collection of facts, Bacon’s natu ral history has 
become again the focus of scholarly debates. For a recent survey of the fi eld, 
see the articles in Corneanu, Giglioni, and Jalobeanu (2012). See also Jalo-
beanu (2010; 2012) and Manzo (2009).
 4. Bacon has a number of methodological texts containing precepts on 
how to write natu ral history. Among them, the most relevant are Parasceve 
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(OFB, 11), the introductory preface to HNE (OFB, 12) and DGI (SEH, 5). See 
Jalobeanu (2012).
 5. Bacon’s instruments of ordering natu ral histories are lists and  tables 
as it  will become clear from the third and fourth sections of this chapter.
 6. According to Rees, this princi ple of quantifi cation was at least in 
part motivated by the interest in generating a practical and productive phi-
losophy, and it was not fully substantiated by Bacon’s ways of recording natu-
ral histories, which were oft en lacking proper quantitative data (Rees 1985, 33). 
Rees also claims that only for two of Bacon’s natu ral histories, HVM and 
HDR, are “quantitative mea sure ments . . .  fundamental” and that Bacon’s 
posthumously published Sylva sylvarum “contains very  little research con-
ducted on quantitative lines.” I think that this is not correct; on the con-
trary, attempts to mea sure are fundamental for Bacon’s natu ral historical 
approach. What can vary is the degree of precision.
 7. Mechanica is the earliest surviving text of mechanics found in the 
Aristotelian corpus, written, most prob ably, by a member of the early 
Peripatetic school. It has a number of striking features that have puzzled 
many scholars since its recovery. Th e text was included in the Aristote-
lian corpus published by Aldus in 1495–98 and had a very in ter est ing 
sixteenth- century circulation and posterity among humanists, natu ral 
phi los o phers, and mathematicians. It was still extremely popu lar at the 
end of the sixteenth  century and became part of the university curricu-
lum in more than one Italian university. On the reception of Mechanica 
in the sixteenth  century see Rose and Drake (1971). Both the question of 
authorship and the nature and philosophical relevance of “mechanics” in 
this text are still subject to discussion among historians of mathe matics 
(see Berryman 2009). For a recent survey of the question of authorship see 
Coxhead (2012).
 8. Duhem has already remarked that Mechanica represents a quite 
striking attempt to unify the action of a number of diff  er ent devices  under 
a single analy sis, and to off er a mathematical account of their action. Ber-
ryman’s characterization of the text is that “it seems to be an attempt to 
make philosophical sense of the ‘law of the lever’ and its operation in vari ous 
situations” (114).
 9. Th e text refers to the status of mechanical prob lems, which “are not 
altogether identical with physical prob lems, not entirely separated from 
them, but they have a share in both mathematical and physical speculations” 
(847a; Aristotle and Hett 1936, 332).
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 10. In his 1605 Th e Advancement of Learning Bacon introduces “phys-
icke” with the following specifi cation: “taking it according to the derivation, 
& not according to our Idiome, for Medicine” (OFB, 4:82).
 11. On the multiple meanings and traditions of re nais sance mathe-
matics see Goulding (2010), Cifoletti (1990), and Axworthy (2009).
 12. Th is is the reason why,  until very recently, historians of philosophy 
could speak of “mathematizing nature” as if geometry had a unique and es-
sentialist meaning throughout the sixteenth and seventeenth centuries. In 
fact, geometry and arithmetic  were evolving subjects with multiple mean-
ings and oft en belonging to very diff  er ent traditions.
 13. For example, through the in ter est ing works on expertise and ex-
perts in early modern Eu rope, or through more general discussions on 
mechanics and mechanical prac ti tion ers in early modern Eu rope (see Ash 
2004; Long 2001).
 14. For Bacon, the idols are “the deepest fallacies of the  human mind,” 
originating in a “corrupt . . .  predisposition of the mind” and able to “infect 
all the anticipations of the intellect” (SEH, 4:431).
 15. Although fully articulated only in the twentieth  century, in the 
works of historians and phi los o phers of science, this idol actually origi-
nated in the seventeenth  century and can oft en be identifi ed in the works of 
Bacon’s followers. See the discussion in Giglioni (2013). In a seminal arti-
cle, Kuhn made this evaluative judgment on Bacon’s dislike of mathe matics 
the very basis of a general classifi cation of early modern sciences into 
“mathematical” and “Baconian” (see Kuhn 1977).
 16. Bacon’s idols of the tribe originate “from the evenness of the sub-
stance of the  human spirit, or from its preconceptions, its narrowness, its 
restlessness, contamination by the aff ections, the inadequacy of the senses, 
or mode of impression” (OFB, 11:89). Th ey are “rooted in  human nature 
itself” or in the “race” or “tribe” of men (79–80).  Under this label Bacon dis-
cusses vari ous forms of simplifi cations and generalizations. Of relevance for 
us now are the mind’s tendency to accept a limited number of simplifi ca-
tions and affi  rmatives and then to “pull every thing into line and agreement 
with them,” or to suppose that “ there is more order and equality in  things 
than it actually fi nds” (OFB, 11:83).
 17. Repeated refutations came from two directions in the past de cades. 
On the one hand, some Bacon students have shown the importance of 
mathe matics (particularly arithmetic) for Bacon’s natu ral historical enter-
prise. On the other hand, impor tant work has been done to disclose the pe-
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culiar character of sixteenth- century “mathe matics” and the vari ous traditions 
within the large fi eld of mathe matics (see for example Feingold 1984; Gould-
ing 2010; Pumfrey 2011; Ash 2004). On Bacon and mathe matics see Rees 
(1986).
 18. Although this situation is about to change due to the eff orts of Gra-
ham Rees and his Oxford Francis Bacon team, it is still easy to see how  little 
attention and research has been devoted to Bacon’s natu ral historical writ-
ings by contrast with his philosophical or literary output. A number of rela-
tively recent works have tried to refute the par tic u lar claim that Bacon’s 
natu ral histories consist of large collections of random data about nature 
(see for example Corneanu, Giglioni, and Jalobeanu 2012; see also Anstey 
and Hunter 2008; Hunter 2007).
 19. I have discussed the implication of this idol for the fi eld of Baconian 
studies in Jalobeanu (2013b).
 20. It is worth noting that in the earlier AL, Bacon classifi ed mathe-
matics as a branch of metaphysics. In DA he moves it from metaphysics to 
this intermediate, auxiliary, and very impor tant place as an appendix of 
both physics and metaphysics (and their corresponding operative sciences, 
mechanics and magic).
 21. Th e term “mathematical practitioner” is admittedly vague and was 
subject to numerous debates and attempts of refi nement and replacement. 
I am using it  here in a general sense, to designate a practical approach to 
mathematical prob lems.
 22. Giovanna Cifoletti has explored the “vernacular scientifi c proj ect” 
of late sixteenth- century France. A similar proj ect of vernacular geometry 
can be found in  Eng land  toward the end of the  century, in the works of John 
Dee, and Leonard and Th omas Digges. On vernacular mathe matics and 
vernacular geometry see Cifoletti (1990) and Taylor (2011).
 23. For a description of this translation and its context see Johnston 
(1991, 335).
 24. On the peculiarities of Ramus’s views on Euclid, his edition of Eu-
clid’s Geometry and associated texts, see Goulding (2010).
 25. As the dedicatory letter emphasizes, the book is the result of Hood’s 
two years of teaching as a “mathematical lecturer of the city of London.” 
Hood held this position from its establishment in 1588  until 1592.
 26. Th is is followed by a second volume, containing books seven to 
nine, published in 1565. On the context of this translation, see Cifoletti 
(1990).
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 27. “les Mathematiques traitent principalement les negoces celestes, 
les mouvements des cieux, les cours du Soleil & de la Lune & des autres 
planettes” (Forcadel 1564).
 28. A slightly more complicated case is that of John Dee’s conception of 
mathe matics. In his Mathematical Preface he is certainly arguing for a form 
of putting together mathe matics and physics. However, in the classifi cation, 
all the ensuing new mathematical sciences are still classifi ed as mathe matics 
(see Rampling 2011; Johnston 2012).
 29. Historians tend to say that Pantometria was largely written by 
Leonard Digges and published posthumously by Th omas, with minimal ad-
ditions. It is however fair to say that  these additions  were fully investigated. 
Indeed, the  whole treatise has never been thoroughly explored and to date 
 there is no modern edition of it (Bennett 1991; Taylor 1967; Taylor 2011).
 30. It is worth mentioning that in the preface Th omas Digges mentions 
explic itly that the doctrine of the fi ve solid bodies is added “not to discourse 
of their secrete or mystical appearances to the Elementall regions and frame 
of Coelestial Spheres, as  things remote and far distant from the method, 
nature and certaintie of Geometrical demonstration” but to determine 
their properties, including superfi cies and volumes (see Digges and Digges 
1571, 97).
 31. Preface to the reader.
 32. On Digges’s views on mathe matics see also Pumfrey (2011).
 33. “Physic diff used, which touches on the variety and particularity of 
 things, I  will again divide into two parts: Physic concerning the  things Con-
crete, and Physic concerning  things Abstract; or Physics concerning Crea-
tures, and Physic concerning Natures . . .  But as all Physics lies in a  middle 
term between Natu ral History and Metaphysic, the former part (if you ob-
serve it rightly) comes nearer to Natu ral history, the latter to Metaphysic. 
Concrete Physics is subject to the same division as Natu ral history; being 
conversant  either with the heavens or meteors, or the globe of earth and 
sea, or the greater colleges, which they call the ele ments, or the lesser col-
leges or species, as also with pretergenerations and mechanics. For in all 
 these Natu ral History investigates and relates the fact, whereas Physic like-
wise examines the  causes” (SEH, 4:347).
 34. Bacon’s concrete physics has a part dealing with celestial bodies, 
one dealing with meteors, a third one dealing with the “greater masses” or 
the ele ments, another one dealing with “lesser masses,” one dealing with 
pretergenerations; to  these, Bacon adds mechanics. Th is addition of me-
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chanics is highly relevant to the kind of mixed-mathematical inquiry Bacon 
had in mind for his physics. For a slightly diff  er ent interpretation on philo-
sophical mechanics see Weeks (2008).
 35. See also SEH (4:348) with the claim that astronomy is solely inter-
ested in “mathematical observations and demonstrations,” without paying 
attention to what happens in the “interiors” [viscera] of the heavens. What 
Bacon describes  here is the theorica planetarum— a two- sphere system and 
the calculus necessary to compute relative motions and positions of objects 
on the two spheres. For a more general discussion see Barker and Goldstein 
(1998) and Westman (1980).
 36. In more detailed criticisms of astronomy Bacon delineates three dif-
fer ent reasons for why traditional astronomy is not only false but also idola-
trous. One is that by assuming more order in the universe than  there  really 
is, astronomy instantiates one of the most common idols of the tribe. Th e 
second is that astronomers patched up their lack of data and inability of cal-
culus with ad hoc assumptions and hypotheses. Th e third is that such pro-
cedures stand in the way of collecting true and accurate data.
 37. Bacon compares astronomy with the stuff ed ox off ered by Pro-
metheus as a sacrifi cial victim, instead of a real ox; similarly, astronomy is 
an empty science, “stuff ed” with seemingly complex mathematical calcula-
tions in order to seem real. His own, reformed science  will be, by contrast, 
a Living Astronomy. Bacon was seriously interested in building up this 
proj ect. Th e posthumous Sylva sylvarum mentions twice a special section 
on heavenly bodies. Such a section was never published, but can be found 
in the draft  manuscript of Sylva sylvarum and it has been discussed by 
Graham Rees (1981). On Bacon’s cosmology see also Rees (1975, 101, 161–73).
 38. In his projected natu ral history of the heavens, Bacon argues for an 
instrumental and experimental approach. He quotes approvingly “the in-
dustry of mechanics and the eagerness and enthusiasm of certain learned 
men, that by means as it  were of the skiff s and boats of optical instruments 
have begun . . .  to do new trade with the celestial phenomena” (OFB, 6:115). 
DGI also quotes Galileo’s astronomical discoveries and proves Bacon’s fa-
miliarity with both Sidereus nuncius and the discovery of sunspots.
 39. In DGI, Bacon mentions the distortions of the atmosphere and the 
diff erences between naked eye observations and telescopic observations (OFB, 
6:155, 157); he discusses apparent magnitudes and real magnitudes (167), 
and emphasizes the need of a reformation of “optical calculations” (ibid.). He 
enumerates the standard methods of mea sure ment in astronomy, including 
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parallax calculations (169). In NO, further prob lems of astronomical mea-
sure ment are enumerated, such as, for example, the need for reliable clocks. 
Bacon even mentions the possibility of a limited speed of light, which would 
imply the introduction of an “apparent time” beside the “real time” (see OFB, 
11:376–77).
 40. On comparative mea sure ments see also NO (OFB, 11:379–80).
 41. Th e passage belongs to a longer excerpt of the same proj ect, Bacon’s 
description of a proper natu ral history of the heavens, from the unfi nished 
Descriptio globi intellectualis.
 42. Th e abstract physics has two parts: a doctrine concerning the “con-
fi gurations of  matter” and a doctrine concerning the “appetites and mo-
tions.” Th e latter is subsequently divided into  simple motions and compound 
motions, or pro cesses (see SEH, 4:355–56).
 43. Surely as the words or terms of all languages, in an im mense vari-
ety, are composed of few  simple letters, so all the actions and powers of 
 things are formed by a few natures and original ele ments of  simple mo-
tions (SEH, 5:426). Th e meta phor of the alphabet is per sis tent in Bacon’s 
writings and one of his  later works bears the very title Abecedarium novum 
naturae.
 44. My emphasis and with a slightly amended translation; what we have 
 here is the same equivalence of mathe matics with mea sure ment we have seen 
in the previous section of this chapter.
 45. On Bacon’s appetitive metaphysics see Giglioni (2010; 2011; 2013). 
See also Weeks (2007a; 2007b).
 46. Th e list of  simple motions from Novum organum ends with the fol-
lowing specifi cation: “I do not deny that other species could perhaps be 
added, or that the divisions set out could be shift ed the better to match the 
truer veins of  things, or that, lastly, that their number could be reduced” 
(OFB, 11:413).
 47. I have given more examples of this strategy in my 2016 publication.
 48. Patet quod Aer & Spiritus, & huiusmodi res, quae sunt toto corpore 
tenues & subtiles, nec cerni nec tangi possint. Quare in Inquisitione circa 
huiusmodi corpora, Deductionibus omnino est opus (OFB, 11:346–47).
 49. Th e weather glass is also on Bacon’s list of Instantia Deductoria; it 
makes the invisible “degrees of Heat or Cold” vis i ble. In the weather glass 
“air expanded pushes the  water down and contracted draws it up, and in 
that way the reduction to what can be seen takes place, and not before or in 
any other way” (OFB, 11:355).
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 50. Simultaneous mea sure ments of this kind require not only identical 
instruments, but also good clocks and many researchers to do the job; this 
gives us some hints as to the complexity of Bacon’s proj ect for mea sur ing the 
properties of the air.
 51. Bacon’s  table of densities appears, with slight variations in PHU, 
NO, and HDR. It is said to be a summonsing instance (OFB, 1:353). In the 
subsequent reconstruction I am indebted to the following conceptual and 
contextual reconstructions: Pastorino (2011a; 2011b) Jalobeanu (2011; 2013c; 
2015).
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In any attempt to understand conceptual history, the cardi-
nal rule is not to assume that thinkers in the past  were trying to express 
what we now understand with perfect clarity. For it  will almost always turn 
out both that their understanding was diff  er ent from ours— that apparently 
innocuous details like using proportions instead of equations “shift s” their 
 whole understanding with res pect to ours— and that “we,” in any case, do 
not understand the  matter as perfectly as we would like to believe. Now, if 
we have learned this lesson of humility, it is partly from reading the classic 
studies of Alexandre Koyré, E. A. Burtt, Cornelis de Waard, Marshall Clag-
ett, Th omas Kuhn, Stillman Drake, and other doyens of the history of sci-
ence, and partly from fi nding them violating that rule themselves. For it is a 
princi ple that is impossible to apply in a total sense:  there are always aspects 
of our understanding of a historical prob lem that we are unwittingly pro-
jecting onto past thinkers when we should not. So if in what follows I should 
appear to be hard on earlier historians of science, this must constantly be 
borne in mind; I do not pretend to be  free of the vice myself.

Th e case I want to discuss  here is the understanding of motion in the fi rst 
half of the seventeenth  century, specifi cally the case of the mathematization 
of  free fall. Galileo famously established in his Discorsi that the distances 
traversed by a heavy body falling from rest in successive equal times are as 
the odd numbers 1, 3, 5, 7, . . .  , or equivalently, that the total distances fallen 
are proportional to the squares of the times of fall (I  shall refer to this as 
Galileo’s “law of fall” or “t2 law”).1 Given the impact that the Galilean law of 
fall had on the mathematization of physics in the hands of Huygens, Leib-
niz, and Newton, this mathematical model has come to be regarded as a 
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constitutive ele ment in the new paradigm of natu ral philosophy known as 
the mechanical philosophy. Kuhn’s term “paradigm” has of course been al-
most voided of content by its initial ambiguity and its subsequent constant 
overuse and misapplication. But  here, one might suppose, we are on safer 
ground: the mathematical modeling of  free fall is an exemplar that featured 
large in Huygens’s Pendulum Clock, in Leibniz’s derivation of the mea sure of 
vis viva as proportional to v2, and in Newton’s derivation of his inverse 
square law of gravitation.

It is also standardly supposed that the way of modeling motion implicit 
in this exemplar may be unproblematically ascribed to Galileo (and to a 
lesser extent, Descartes). On this conception, the trajectory of a moving 
body is represented by a curve on a graph of space traversed against time 
elapsed, and the body has at  every instant of its motion an instantaneous 
velocity that is a function of time elapsed, and whose magnitude is given by 
the slope of the tangent to the curve at that instant. Such an understanding 
is usually ascribed to the original eff orts of  these thinkers themselves. For it 
is to Galileo that we owe the geometric repre sen ta tion of the curved trajec-
tory of a body in motion, and to Descartes the expression of the curve as an 
algebraic equation, with both thinkers resolving such motion into orthogo-
nal components; while the concept of instantaneous velocity derives from 
the notion of a degree of speed used by Galileo in his analy sis of uniform 
acceleration, as well as from Descartes’ notion of conatus.

Nevertheless, I  shall argue, Galileo, Descartes, and  others did not yet 
have our modern understanding of motion as a function of instantaneous 
velocity, since velocity for them was an aff ection of motion and  there is no 
motion in an instant.2 Th e initial evidence for this is in the form of para-
doxes and incongruities that arise from historians of science projecting this 
modern understanding back onto  those authors, and the unconvincingness 
of their attempts to attribute the resulting confusions to the early natu ral 
phi los o phers themselves. Th is prompts the question, how was motion con-
ceptualized prior to the modern account involving instantaneous velocity? 
As soon as this question is raised, the initial appearance of a clear exemplar 
of mathematization of motion begins to evaporate; that is not to say that 
such an exemplar does not eventually emerge, but that the pro cess was no-
where near as smooth as it would appear from our projections of the mod-
ern understanding back onto its originators.

 Th ere  were, I contend, several strands in early seventeenth- century 
thinking about motion that variously complemented or contradicted one 
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another.  Th ere existed a strong presumption from Aristotelian philosophy 
that motion, like time, is continuous. But  there was also a widespread con-
viction that changes in motion occurred discontinuously, with increases in 
the velocity of motion occurring by the addition of discrete increments of 
uniform motion— a discretist conception of acceleration that Stillman Drake 
refers to (rather unhappily) as “the quantum theory of speeds.”  Th ere was 
also a second noncontinuist model of motion as consisting in an alternation 
of motions and periods of rest, with diff erences in speed accounted for in 
terms of diff  er ent proportions of motions and rests, associated in par tic u lar 
with Arriaga (1632). Th en  there was Galileo’s model of nonuniform motion, 
indebted to the Scholastic theory of intension and remission of forms, 
according to which acceleration occurs “continuously from moment to mo-
ment, and not interruptedly from one quantifi ed part of time to another,”3 
as the moving body goes through an  actual infi nity of degrees of speed 
which, taken together, constitute its “overall velocity.” Th is theory ran head-
long into the notorious diffi  culties of the composition of the continuum, a 
fact that provided continued motivation for the two discretist models just 
mentioned.

One could characterize this state of aff airs by saying that prior to the 
advent of the functional model of motion established in the eigh teenth 
 century, the understanding of motion was in a state of Kuhnian crisis:  there 
was no universally accepted paradigm, and instead several competing theo-
ries or paradigms, none of which commanded universal assent. I am not 
convinced that that is the best way to conceive  things, since it suggests that 
 there  were defi nite, well- formed theories or factions in competition with one 
another. Yet  there was not, for example, an Aristotelian theory of nonuni-
form motion, nor was  there a “quantum theory of speeds” in the sense of a 
clearly articulated theory. In the last section of this chapter I  will revisit this 
issue, and suggest a diff  er ent way of characterizing the situation. But before 
we can intelligently discuss such historiographical  matters, we need to ex-
amine the specifi cs of the case before us, the mathematization of  free fall by 
Galileo and his pre de ces sors, and by Descartes.

galileo and his pre de ces sors

Let us begin with Galileo’s criticism in the Discorsi of his pre de ces sors’ view 
that a falling body  will move more swift ly as its distance from its point of 
origin increases. As is well known, Galileo had arrived at the correct law for 
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freely falling bodies in both its forms in 1604. 
In a letter to his friend Paolo Sarpi of Octo-
ber 16, 1604, he writes that “spaces traversed in 
natu ral motion are in the double proportion of 
the times”— the t2 rule for the proportion of dis-
tance to time of fall—“and consequently that 
the spaces traversed in equal times are as the 
odd numbers starting from 1” 4— the odd- number 
rule for successive distances covered in succes-
sive times. But in the same letter he announces 
the princi ple on which this law is based:

And the princi ple is this, that the natu ral moving body goes by increasing its 
velocity in the proportion that it is distant from the beginning of its motion; 
as, for example, with a heavy body falling from the point a through the line 
abcd, I suppose that the degree of velocity which it has in c to the degree it 
has in b is as the distance ca is to the distance ba, and so consequently in d it 
 will have a degree of velocity more than in c according as the distance da is 
more than ca.5

We tend automatically to interpret Galileo’s “degree of velocity” as an in-
stantaneous velocity, and therefore take his princi ple to be that the velocity 
of fall at a given instant is proportional to the distance through which the 
body has fallen from rest. Th is is how the princi ple was interpreted by Koyré, 
following accounts previously given by Paul Tannery and Ernst Mach. But 
then “the correct formula for the law ‘the speed of the moving body is propor-
tional to the distance covered’ would be an exponential function,” writes 
Koyré, citing Tannery (1926, 441ff .). Th e argument for this claim is sketched 
“in our language of  today” by Mach, and can be fi lled out as follows.6 If the 
instantaneous velocity v is related to distance fallen s in a given time t by

v = ds/dt = as,

with a constant, then

∫ ds/s = ∫ a dt = ∫ ds/s ,

and

loge s = at + c7

Figure 1. Galileo to Sarpi, 1604.
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 Here  there is a diffi  culty that if s = 0 at t = 0, we obtain c = loge 0. But loge 0 is 
undefi ned. Th is can be circumvented if instead we assume that the body is 
already in motion at t = 0. For if at t = 0 we have s = A (and thus v = aA), with 
A another constant, we obtain c = loge A, so that

loge s − loge A = loge (s/A) = at

giving

s = A exp(at)

and

v = ds/dt = aA exp(at)

Th us both the distance and the velocity increase exponentially with time 
elapsed.

Galileo soon realizes his error (most prob ably by 1610, although we have 
no direct documentary evidence), and in the Dialogo of 1632 correctly charac-
terizes the degrees of velocity (represented by transverse lines) as increasing in 
length in proportion to increasing time, not to distance fallen. As he expresses 
it in the Discorsi, “in equal time intervals, the body receives equal increments 
of velocity; . . .  the acceleration continues to increase according to the time and 
duration of motion.”8 At this point in the dialogue Galileo has Sagredo say that 
“it seems to me that this could be defi ned with perhaps greater clarity without 
altering the conception as follows: a uniformly accelerated motion is that in 
which the velocity  will have increased in proportion to the increase in the 
space that has been traversed.”9 Th is aff ords Galileo the opportunity to admit 
(through Salviati) that this is how he once conceived  things, and to off er an 
argument to show why this proposition is not a clearer or even an equivalent 
way of describing the case, but is in fact “false.” (We  will come back to that ar-
gument presently.) He proposes instead the following princi ple: “We call that 
motion equably or uniformly accelerated which, starting from rest, acquires 
equal moments of velocity in equal times.”10 Now Mach and com pany inter-
pret this princi ple as stating that the instantaneous velocity increases in pro-
portion to the time,11 so that dv = g dt, where g is a constant, giving

v = ds/dt = gt

Now,

s = ∫ g t dt
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and, with s = 0 at t = 0, the t2 law correctly follows:

s = 1/2 g t2

Th e question now arises, how is it that Galileo could have identifi ed the 
wrong princi ple in the fi rst place?  Here it must be admitted that the fallacy 
is a subtle one, which is hard to see without the benefi t of the calculus. If no 
time has elapsed, the falling body has no speed and has fallen through zero 
distance; then as it falls, its speed increases as time elapses, but so does the 
distance it covers. It goes faster the farther it is from its starting point, and 
it does not seem to  matter  whether the remoteness from its starting point is 
thought of temporally or spatially. But this does not explain why Galileo 
chooses initially to enunciate the princi ple in terms of space covered.

One explanation off ered by historians of science (Koyré cites Emil Wohl-
will and Pierre Duhem) is that in so  doing, Galileo was simply drawing on 
the tradition. Leonardo da Vinci had written that “Th e heavy body in  free 
fall acquires a degree of motion with each degree of time, and a degree of 
speed with each degree of motion.”12 Yet he had still “asserted that the speed 
is proportional not to the time elapsed but to the distance covered,” as had 
Giovanni Battista Benedetti and Michel Varron, and the former was cer-
tainly an infl uence on Galileo (Koyré 1978, 70). But Koyré rejects the suffi  -
ciency of this explanation in terms of tradition, since it only pushes the 
diffi  culty further back without resolving it (69). So why did Leonardo, Bene-
detti, and Varron, and also  later Galileo and Descartes, prefer to express the 
relation in terms of a proportionality to distance covered?

“Th e reason,” writes Koyré, “seems at once both  simple and profound. It 
is entirely a  matter of the role that geometry plays in modern science, of the 
relative intelligibility of spatial relations” (1978, 73). Th e mathematizing of 
the laws of nature “comes to the same  thing” as the geometrization of space, 
“for how could something have been mathematised— before Descartes—
except by geometrising it?”13 Th us Galileo’s error of using a repre sen ta tion 
that “is only valid for an increase which is uniform in relation to time” is 
attributed by Koyré to his “thorough- going geometrisation,” which “trans-
fers to space that which is valid for time” (78).

Th is is not the place to contest Koyré’s  grand narrative of the scientifi c 
revolution as “the geometrization of nature,” which has been ably done by 
 others.14 But I cannot let his appeal to the notion of the “geometrization of 
time” go unchallenged. One fi nds similar Bergsonian considerations in 
Burtt, who contends that, as a result of Galileo’s success in mathematizing 
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motion by treating time as a straight line, “time as something lived” has been 
“banished from our metaphysics.”15 Th is ignores the fact that one fi nds the 
comparison of time with a line even in Aristotle.16 But leaving such grander 
claims aside, Koyré makes two specifi c claims  here, both of which seem 
doubtful, if not outright false. Th e fi rst is that the mathematization of time 
necessarily involves its geometrization, and the second is that it is this ge-
ometrization that leads Galileo to substitute space for time in announcing 
his princi ple. Concerning the fi rst, it is not the case that the only way to 
mathematize time prior to Descartes was through geometry. Th e idea that 
the successive moments of time might form an arithmetical and not a geo-
metrical progression was far from being unavailable; indeed, as we  will see 
in detail in the section below on Clagett and the Merton School, Leonardo 
da Vinci, Beeckman, Fabry, and Cazré all characterized the succession of 
moments as a discrete order, and consequently represented it in terms of an 
arithmetical progression. Concerning the second claim, if one instead con-
ceives time as constituting a continuous ordering—as did Galileo in assert-
ing a 1–1 correspondence between the instants of this time and degrees of 
speed—it is indeed natu ral to represent such a continuous ordering by anal-
ogy with the ordering of points on a line.17 One may call the employment 
of this spatial model to represent temporal order a “spatialization.” However, 
this is not in itself a fallacy:  there may be (and indeed are) other features of 
time besides the ordering of its instants, but representing a temporal order-
ing by analogy with a spatial ordering is traditional and unproblematic. 
Galileo, of course, continues to represent time in this way in his published 
works. Th e root of the fallacy we are exploring does not lie in representing 
time by a line—as Galileo does in the Dialogo (see Figure  2), where he 
writes of “the infi nite instants that  there are in the time DA corresponding 
to the infi nite points on the line DA,”18 setting them in 1–1 correspondence 
with the infi nite degrees of velocity of a uniformly accelerated motion— but 
in conceiving  these same degrees of veloc-
ity to accrue uniformly in relation to the 
distance of the body from the beginning 
of its fall. If the degrees of velocity increase 
uniformly in time, then the degree of ve-
locity, say, halfway through the time of the 
fall is not the same as the degree of velocity 
at a point halfway through the distance of 
the fall.
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Figure 2. Galileo, Dialogo, Second Day.
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Of course, one might argue that a more charitable reading of Koyré’s 
point is that it is the very repre sen ta tion of time by a line in space that led 
Galileo, Descartes, and  others to take this false step of taking temporal dis-
tance from the beginning of the motion to be proportional to the spatial 
distance from it. Perhaps  there is something to this. But what I wish to sug-
gest  here is that  there is a much more compelling way of understanding why 
 these authors did not see the fallacy of moving backward and forward be-
tween talk of equal intervals of a motion through space and of equal inter-
vals of a motion through time. Th is has to do with their notion of velocity, 
and its concomitant modeling by the theory of proportions.

As Enrico Giusti has argued, the operant notion of velocity in Galileo’s 
time was the Aristotelian one: velocity (or “celerity,” swift ness) is an aff ec-
tion of a  whole motion understood as completed. On this conception, the 
greater the velocity, the less time it  will take for a given body to traverse a 
given distance, or the greater the distance it  will cover in the same time. Th is 
corresponds to what Aristotle stated in his physics: “If one  thing is faster 
than another, it  will cover a greater distance in an equal amount of time, and 
it  will take less time to traverse an equal distance, and it  will take less time 
to traverse a greater distance. Some  people take  these properties to defi ne 
‘faster’ ” (Physics vi.2, 232a 24–27; Aristotle 1996, 141). Such a conception of 
velocity was still current in the seventeenth  century,19 as can be seen by the 
defi nition of velox (“fast”) given by the Jesuit physicist Honoré Fabry, writing 
in opposition to Galileo in 1646: “Def. 2: A fast [velox] motion is that by which 
more space is traversed in an equal time, or an equal space in less time; and a 
slow motion is defi ned contrariwise” (Fabry 1646, 1). Damerow, Freudenthal, 
McLaughlin, and Renn (1992) have made very much the same point in their 
book, a point endorsed and aptly summarized by Vincent Jullien and André 
Charrak in their study of Descartes’ writings on  free fall as follows: “Speed, 
such as it is in usage in the pre- classical tradition (before Galileo), which 
P. Souff rin has called ‘holistic speed’ (‘global speed’ might be preferable), is 
the mea sure of a movement accomplished in an elapsed time and/or a space 
traversed” (Jullien and Charrak 2002, 37–38).20 Giusti (1990) calls this the 
velocità complessive (“overall velocity”), which is the term I  shall use.

Now it is crucially impor tant to realize that this is not just a term, but a 
concomitant of how motion was represented mathematically. Velocities are 
aff ections of motions, and  these are compared quantitatively using propor-
tions. It is true that Aristotle did not compare velocities directly, but as Clag-
ett explains (1959, 217), the phi los o phers of the Merton School interpreted 
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his defi nition to allow this. Th us, according to Th omas Bradwardine, “for 
 every two local motions continued through the same or equal times, the ve-
locities and spaces are proportional, so that one of the velocities is to the 
other as the space traversed by one velocity is to the space traversed by 
the other,” and “for  every two local motions over the same or equal spaces, 
the velocities and times are always inversely proportional, so that one of the 
velocities is to the other as the space traversed by one velocity is to the space 
traversed by the other” (Clagett 1959, 233). Th at is, if T1 = T2, then V1:V2 = S1:S2, 
and if S1 = S2, then V1:V2 = T2:T1. But  these are the velocities with which 
 those motions are accomplished, overall velocities, not velocities at a time, 
as in a con temporary understanding. Again, this concurs with Jullien and 
Charrak, in their summary of the conclusions of Damerow et  al.: “Th e 
terms speed, velocitas or celeritas, employed by themselves, do not desig-
nate the speed in an instant, or in ‘a point in the trajectory’ ” (2002, 37).

Th is contrasts with the reasonings of Mach, Tannery, and Koyré ex-
pounded above, who read back into the work of Galileo and his pre de ces-
sors the conception that Newton’s work has accustomed us to, where  there 
is a velocity of motion at  every single instant. To Galileo and his contempo-
raries, however, such a notion of instantaneous velocity would have ap-
peared self- contradictory.  Th ere cannot be any motion in an instant, since a 
motion must take place over time. So, if velocity is an aff ection of a motion, 
 there cannot be such a  thing as an instantaneous velocity.

Th is, of course, is why Galileo (following in the tradition of the Merton 
School and Oresme)  adopted and developed the notions of degree of velocity 
and moment of velocity: precisely in an attempt to explicate how an acceler-
ated motion gets progressively faster without assuming a motion in an in-
stant. He does not have the modern concept of an integral of instantaneous 
velocities with res pect to time;21 instead he appropriates the idea initiated by 
the Merton School that a motion has a certain intensity at any given instant. 
Each such intensity can be represented quantitatively by a transverse line, 
in such a way, Galileo asserts, that “all the degrees of velocity” can compose 
into the overall velocity of the motion in the same way that “all the lines” 
can be seen to add up to the  whole corresponding area. Th us in Folio 128 of 
the Fragments Connected with the Discorsi Galileo wrote:

Th us the degrees of velocity continually increase at all the points of the 
line af according to the increment of the parallels drawn from all  these 
same points. Moreover,  because the velocity with which the moving body has 
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come from a to d is composed of all the degrees of velocity acquired in all the 
points of the line ad, and the velocity with which it has traversed the line ac is 
composed of all the degrees of velocity that is has acquired in all the points of 
the line ac, it follows that the velocity with which it has traversed the line ad 
has the same proportion to the velocity with which it has traversed ac, as all 
the parallel lines drawn from all the points of the line ad up to ah have to all 
the parallels drawn from all the points of the line ac up to ag.22

 Here we see that the conception is that all the degrees of velocity add up to 
a velocity, but this velocity is the overall velocity, Giusti’s velocità comples-
sive, the swift ness with which the motion is accomplished. By this con-
struction Galileo has proved this to be proportional to the area of the 
corresponding triangle, and thus to the square of the distance of fall. But 
now he concludes:

Th us the velocity with which the line ad is traversed to the velocity with 
which the line ac is traversed has double proportion to that between da and 
ca. And since the ratio between the velocities is the inverse of the ratio of the 
times (for to increase the velocity is the same as to decrease the time) it fol-
lows that the time of the motion through ad is to the time of the motion 
through ac as the subduplicate proportion of the distance ad to the distance 
ac. Th us the distances from the point of departure are as the squares of the 
times, and, dividing, the spaces traversed in equal times are as the odd num-
bers from unity.23

Th e wording  here provides confi r-
mation that Galileo’s concept of 
velocity in 1604 is the Aristotelian 
one: it is “the time of the motion 
through a given line,” not the in-
stantaneous velocity at the end of 
the motion. In keeping with this 
concept he reasons that the times 
are inversely as the overall velocities, 
so that, since the velocities are as the 
square roots of the distances, the 
times are as the square roots of 
the  distances, and “the distances 
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Figure 3. Galileo, Frammenti attententi ai Discorsi.
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from the point of departure are as the squares of the times.” Th is is a  mistake, 
since what should follow is that the times are inversely as the square roots of 
the distances. Th is can be seen more clearly using (modern) proportions: 
tad : tac = vac : vad = √ac:√ad. ∴ ac : ad = tad

2: tac
2. But Galileo does not notice 

this error, seduced, no doubt, by the obviousness of the fact that as the body 
falls, its distance and time from the starting point both continually increase.24

Subsequently, though, Galileo did come to realize that  there is an incom-
patibility between his t2 law and the princi ple on which he had based it, that 
the velocity of the falling body is proportional to its distance from the begin-
ning of its motion. Guiding him in fi nding the right princi ple, as he explains 
in the Discorsi, was above all the Aristotelian notion of “the intimate rela-
tionship between time and motion”; this, together with the idea that “we 
fi nd no addition or increment simpler than that which repeats itself always 
in the same manner,”25 he was led to the correct princi ple that a motion 
would be uniformly and continuously accelerated “when, during any equal 
intervals of time what ever, equal increments of velocity are given to it.”26 
Th e degrees of velocity, that is, must be conceived as increasing at successive 
instants of the time of fall, and not at successive distances from the begin-
ning of the motion.

Th e subtlety of  these considerations and awareness of his previous error 
account for the circumspection with which Galileo treats the topic of uni-
formly accelerated motion in the Discorsi. He is careful not to talk of the ve-
locities of a body moving with uniform acceleration, but the degrees of 
velocity (velocitatis gradus) it has at each of the instants of its motion, thus 
staying close to the medieval tradition. His famous so- called Mean Speed 
Th eorem, Th eorem 1 of his account of accelerated motion on the Th ird Day 
of the Discorsi, does not refer to the mean as one between “the highest speed 
and the speed just before acceleration began,” as Crew and de Salvio trans-
late it (1954, 173). Th e comparison is between a body in uniformly acceler-
ated motion and the same body moving uniformly with a degree of velocity 
equal to one- half of the fi nal degree of velocity of the accelerated one: “Th e 
time in which a given space is traversed by a moving body with a motion 
uniformly accelerated from rest is equal to the time in which the same space 
would be traversed by the same body moving with an equable motion whose 
degree of velocity is one half of the last and greatest degree of velocity of 
the preceding accelerated motion.”27

Th is repeats the same argument Galileo had given earlier in the Dialogo: 
 there a body moving with an equable motion whose constant degree of 
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velocity is equal to “the greatest degree of velocity acquired by the moving 
body in the accelerated motion”  will cover twice the space in the same time.28 
Th is should be compared to the analogous application of the Merton rule to 
uniformly decelerated motion by Nicolas Oresme: “If a is moved uniformly 
for an hour and b is uniformly decelerated in the same hour from a degree 
[of velocity] twice [that of a] and terminating at no degree, then they  will 
traverse equal distances, as can easily be proved. Th erefore, by the defi nition 
of velocity, it  ought to be conceded that they  were moved equally quickly for 
the  whole hour. Th erefore, the  whole motion of b  ought not to be said to be 
as fast as the maximum degree of velocity.”29  Here Damerow and Freuden-
thal make some cautions, following Anneliese Maier (Damerow et al. 1992, 
18–19). In Oresme, and in the  later repre sen ta tions, this is simply a method 
of graphical repre sen ta tion that shows how the variation of qualities can be 
depicted, rather than a method of calculation. Something similar seems to 
be implied in Galileo’s usage: if the area represents the velocity, the lines 
represent the degrees.  Th ere is no question of “integrating” infi nitesimally 
thin lines to make a surface.

With  these considerations in mind, let us examine a typical argument 
of one of Galileo’s pre de ces sors, before we proceed to his criticisms. In his 
De motu tractatus of 1584, Michel Varron wrote:

Th e spaces of this motion conserve this proportion of celerity, so that what-
ever the ratio of the  whole space through which the motion is made to the 
part (the beginning on both sides is assumed to be where the beginning of 
the motion is), the ratio of celerity to celerity is the same. For example, if 
some force  will move through the line ABE, and AB is part of this line, then 
the ratio of AE to AB  will be the same as that of the celerity of the motion at 
the point E to the celerity at the point B.

A proportion of this kind is observed in the parallels cutting a triangle . . .  
So if the space is divided into aliquot parts, at the end of the second space it 
 will be carried twice as fast as at the end of the fi rst.30

 Th ere is ambiguity  here: Varron talks of the body being carried twice as fast 
at the end of the second space, which certainly looks like an instantaneous 
velocity. Nevertheless, he is (like Galileo) applying the theory of propor-
tions: if it is carried twice as fast through the second space of its motion, 
it  will complete that space in half the time. Th is requires the celerity to be 
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taken in the Aristotelian 
sense as the swift ness of the 
motion taken as a  whole.

Now let us turn to the 
way in which Galileo criti-
cizes his pre de ces sors. Th e 
passage in question runs as 
follows:

When the velocities have 
the same proportion to 
the spaces traversed, or to 
be traversed, such spaces come to be traversed in equal times; for if the [ve-
locity]31 with which the falling body traverses the space of four cubits be 
twice the [velocity] with which it traverses the fi rst two cubits (seeing as 
the former space is double the latter), then the times of such traversals  will 
be equal; but for the same mobile to traverse the four cubits and the two in the 
same time could take place only in an instantaneous motion; but we have 
seen that the heavy body makes its falling motion in time, and traverses 
the two cubits in a smaller time than the four; therefore it is false that the 
velocity increases as the space.32

Alexandre Koyré (1978) calls this a “specious argument” and a “thoroughly 
mistaken” refutation of his pre de ces sors’ views. Again citing Mach and 
Tannery, he writes: “Th e argument contains a similar error to that which we 
found in the argument discussed earlier: Galileo applies to motion, of which 
the increase of speed is proportional to the distance covered a calculation 
which is only applicable to uniformly (in relation to time) accelerated 
motion.”33

We may explicate Koyré’s criticism as follows. Galileo applies his mean 
speed theorem (valid only for motion uniformly accelerating with time) to 
obtain s = 1

2v t, where v is the fi nal velocity. Th is yields t = 2s/v. So if t1 and t2 
are the times of fall through 2 and 4 cubits respectively, t1 = 4/v1, and t2 = 8/v2. 
But since v2 = 2v1, t2 = 8/2v1 = 4/v1, we have t2 = t1, and the time of fall through 
the second two cubits is 0. So, according to Koyré, Galileo has generated this 
contradictory conclusion by applying to the case of a velocity increasing with 
distance a calculation valid only for a velocity increasing with time.

A A

B B F

C G

E E

Figure 4. Michel Varron, 1584.
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But I think much more sense can be made of Galileo’s refutation. Even 
though it is very tempting to read Varron, as did Mach, to intend by his 
expression “the celerity of motion at E” the instantaneous velocity at that 
point,  there is no in de pen dent evidence to suggest that Varron has made 
this conceptual advance— one that, I stress, Galileo himself did not make. It 
is not obvious that Varron is using the word celeritas as a synonym for in-
tensity of motion or degree of speed, so even if  there is something of that in 
his conception, Galileo seems to be interpreting celeritas as a synonym for 
velocitas, the swift ness of the  whole motion calculated as terminating at E.

So, I contend, Galileo is not misapplying his mean speed theorem. He is 
interpreting his pre de ces sors as holding that the overall velocitas of one 
motion to another is proportional to the respective spaces traversed in 
the same times, as he himself had previously done. Th e more quickly a given 
space is covered, or the more space that is completed in a given time, the 
swift er the motion. According to this concept, a motion twice as swift   will 
cover twice the distance in the same time. So if the fi rst two cubits are tra-
versed with an overall velocity v1, and the  whole four cubits with a velocity 
v2 = 2v1, then the times of fall  will be t1 = 2/v1, and t2 = 4/v2 = 2/v1, and we  will 
have t2 = t1, so that the time of fall through the second two cubits is 0, as 
Galileo argued. If this is the correct interpretation of Varron’s argument, 
then Mach’s analy sis is in error in imputing to him the modern concept of 
instantaneous velocity. Moreover, on this interpretation Galileo’s reductio 
goes through, and no paralogism is involved.  Th ere may well be a rhetorical 
component to his argument, however, if it is the case that Varron is confus-
ing the intensity of the motion at a given instant (Galileo’s “degree of veloc-
ity”) with this concept of overall velocitas. In that case, Galileo, having 
successfully disentangled them, is attributing only the latter to his pre de ces-
sors in order to make his point.

descartes’ model of  free fall

Now let us turn our attention to Descartes. Th e French savant had fi rst pro-
posed a solution to the prob lem of a heavy body falling in a vacuum  under 
the infl uence of a constant force of attraction in response to a very neat for-
mulation of the prob lem by his Dutch mentor Isaac Beeckman in 1618. I 
have analyzed that episode elsewhere (see Arthur 2007, 2011). What con-
cerns me  here is Descartes’ abiding understanding of what he had thought 
himself to have proved then, as evidenced in his letters to Mersenne of 
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November 13, 1629, and August 14, 1634 
(Descartes 1991, 9, 44).34 In the fi rst of 
 these he pres ents a diagram in which AC 
represents the distance through which the 
body falls, and also represents the motion 
of a body that, having received an impulse 
at A, travels at a uniform speed from A to 
C for the  whole duration. Th is is in keep-
ing with what Descartes had learned from 
Beeckman, that “in a vacuum, what has 
once begun to move keeps on moving at 
the same speed,” and that the action of gravity can be analyzed in terms of 
impulses given to the falling body at successive moments of the fall. Th us 
the vertical lines 2, 3, 4,  etc. represent the distances that would be traversed 
by the same body if it moved solely by virtue of the additional impetuses, 
each equal to the fi rst, received in the second, third,  etc. moments of its 
fall. (Each is shorter than the last, in that the body, traveling at the same 
speed, would have a slightly shorter time of fall.) Accordingly, the force of 
the body’s motion in the fi rst moment  will be proportional to AC; in the 
second moment this force is maintained, and added to it is a second force 
represented by the line 2, and so on. Th e horizontal lines (such as BE) would 
then represent the force or intensity of motion at each subsequent moment. 

Says Descartes,

Th us we get the triangle ACD, which represents the increase in the velocity 
of the weight as it falls from A to C, the triangle ABE representing the in-
crease in the velocity over the fi rst half of the distance covered, and the tra-
pezium BCDE representing the increase in the velocity over the second half 
of the distance covered, namely BC. Since the trapezium is three times the 
size of triangle ABE (as is obvious), it follows that the velocity of the weight as 
it falls from B to C is three times as  great as what it was from A to B. If, for 
example, it takes 3 seconds to fall from A to B, it  will take 1 second to fall from 
B to C. Again, in 4 seconds it  will cover twice the distance it covers in 3, and 
hence in 12 seconds it  will cover twice the distance it does in 9, and in 16 
seconds four times the distance it covers in 9, and so on in due order.

Commenting on this passage, the editor of the standard En glish trans-
lation of Descartes’ writings (for this section, Dugald Murdoch) says 

A  1 
2

B           E

C  1 2 3 4 5 6 D

Figure 5. Descartes to Mersenne, 1629.
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“Descartes wrongly takes the line ABC to represent the time, instead of the 
distance travelled; this leads him to take the distance travelled as being 
proportional, not to the square of the time (d = 1

2 gt2 ), but to a power of the 
time, the exponent of which is log2/log1

3” (Descartes 1991, 9n1).
Murdoch does not give the calculation. But  here is a reconstruction. Des-

cartes is assuming that the velocity of the falling body is proportional to the 
distance traversed, and inversely proportional to the time elapsed. Assum-
ing velocity means the instantaneous velocity, and that it is expressible as a 
function of time elapsed and of distance covered at a given time, we have

v = ds/dt = ks/t

Th e solution to this is s = ctk, where s is the distance fallen, t the time, and c 
and k are constants. Th e fi rst two examples Descartes gives indicate that 
twice the distance is done in 4/3 of the time, and the third example that 4s : 
s is as 16t : 9t.  Th ese relations fi t the formula s1 : s2 = t1

k : t2
k, and yield 2 = (4/3)k 

or k = log2/log 4
3 = log2/(log4 − log3). ( Here the logarithms may be taken to 

any base; Murdoch’s log 1
3 instead of log 4 3(= 2log 1

3) in the denominator 
appears to be an error.) In a precisely similar calculation, Damerow et al. 
(1992, 59) arrive at the following formula:35

s = c t log2/(log4 − log3)

Neither Damerow et al. nor Murdoch reference Paul Tannery’s note in his and 
Adam’s edition of Descartes’ works, although this is the probable source, at 
least of Murdoch’s own note.  Th ere Tannery remarks that Descartes “therefore 
comes to a relation essentially diff  er ent from that of Galileo, since it would 
amount to considering the space traversed as proportional, not to the square of 
the time, but to a power of time whose exponent is the ratio of log 2 to log 4/3, 
that is to say, about 2.4.”36 Jullien and Charrak do reference this note, rightly 
calling it “a  little clumsy,  because anachronistic” of Tannery to “construct an 
exponential function giving the spaces in relation to the variable time.”37

It certainly is anachronistic. Given that Descartes eschewed transcendental 
curves from his geometry, let alone that he knew nothing of functions or the 
integral calculus, this attribution to him of an s = ctk law is unconvincing, to say 
the least.38 Moreover, it again attributes to Descartes a conception of instanta-
neous velocity. But inspection of  these passages shows Descartes writing of “the 
velocity of the weight as it falls from B to C.” Th is is nonsense if one has a con-
ception of velocity as constantly increasing as the body falls, and is only inter-
pretable, I submit, if velocity  here, as above, is an aff ection of the  whole motion, 
the swift ness with which this  whole (leg of the) motion is accomplished.
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Accordingly, my interpretation is as follows: a motion that takes three 
seconds to cover AB is three times less fast (velox) than one that takes one 
second to cover the equal distance BC. Th us if the velocitas for AB is 1/3 of 
that for BC— since ABE = 1/3 BCDE— and it covers AB in 3 seconds, it  will 
cover BC in 1, and AC in 4. If it covers AB in 9 seconds, it  will cover BC in 3, 
and thus AC in 12. And if it covers AB in 9 seconds, and thus AC in 12, since 
ACD:CDHG is also 1:3, it  will cover CG in 4 seconds, and thus ACG in 16.39

Th us if the velocity through the space AB, represented by ABE, is 1 unit, 
that through BC is 3 units, that through CF is 5 units, that through FG is 7 
units. Th is is the odd number rule that Descartes discovered. It is not identi-
cal to Galileo’s rule, contrary to Descartes’ impression, where it is the velocity 
over each equal part of the uniformly accelerated motion, reckoned timewise, 
that increases as the odd numbers. Th e reason Descartes does not see the 
discrepancy is that he has reasoned as follows: If successive equal spaces 
are covered by the moving body in times of ratios 1, 1/3, 1/5, 1/7, . . .  to 1, then 
in successive equal times the spaces covered are of ratios 1, 3, 5, 7, . . .  to 1.

In other words, he has applied the rule that a body traveling with N times 
the velocity  will traverse an equal space in 1/N of the time; or in an equal 
time  will traverse a space N times as  great. But this is just to apply the 
Aristotelian conception of velocitas, the overall velocity discussed above, 
to successive portions of the motion.

It is, I submit, not surprising that Descartes does not see the discrepancy 
between his results and Galileo’s. For in the case of equal times, they do in-
deed get identical results. If the individual spaces covered in equal times are 
in the ratios 1, 3, 5, 7, . . .  to 1, then the overall spaces covered are as the 
squares of the times.

A

B    E

C  D 
Figure 6. Descartes to Mersenne, 1634.
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What is wrong with Descartes’ conceptual apparatus can be seen by 
looking at the motion through four equal spaces, say four cubits, in two spa-
tial halves. By hypothesis, the moving body covers  these in times of ratios 1, 
1/3, 1/5, 1/7, to 1. Th us the overall times of fall through 1, 2, 3, and 4 cubits are 
1, 4/3, 23/15, 176/105, respectively. Now looking at this in two halves, the fi rst 
2 cubits are covered in 4/3 s, the second 2 cubits in 176 / 105 − 4 / 3 = 36 / 105 =
12 / 35 s. Th us the times of  these two equal halves of the motion are in the 
ratio 4 / 3 : 12 / 35 = 35 : 9, that is, almost 4 : 1, whereas the velocities are in the 
ratio 4:12, or 1:3.

In sum, Descartes gets the right result by a compensation of errors, as 
Koyré pointed out. But this compensation consists in his using the Aristote-
lian law of velocitas to transpose the right result— obtained correctly in 1618 
as a result of Beeckman’s having set the prob lem up in terms of times— into 
a result in terms of equal spaces, and then back again. It is not a misreading 
of a proportionality between instantaneous velocity and time elapsed as 
equivalent to a proportion between instantaneous velocity and space cov-
ered. Neither Descartes, nor Galileo, nor Varron, made that par tic u lar er-
ror. For none of them had the concept of instantaneous velocity. And none 
of  these historical episodes can be understood using the terms of this mod-
ern conceptual apparatus without hopeless distortion.

clagett and the merton school

Now, at this point I anticipate that it might be objected that I have exagger-
ated the remoteness of seventeenth- century conceptions of motion from 
ours to such a degree as to obscure the continuity of Galileo’s conceptions 
with the modern understanding. For although Descartes apparently never 
recognized the error involved in his analy sis of the prob lem of fall, Galileo 
did correct his analogous error. And his concept of the degree of velocity is, 
even if not technically a velocity for the reasons given above, clearly the 
source for Newton’s concept. Implicit in Galileo’s concept of degree of ve-
locity, as in the young Newton’s idea of a velocity at an instant (what he  later 
called a fl uxion), is the idea that this is the velocity that a body would move 
at if it  were to continue moving uniformly with the same degree of velocity 
for longer than an instant. Moreover, as Clagett has observed, this same con-
cept can be found in the earlier Merton School of  fourteenth- century Ox-
ford. In a passage from a fragment of On Motion attributed to Richard 
Swineshead, for example, we fi nd: “Th e reason why the velocity of this mo-
tion  will be attended by a described line belonging to it is this: to each de-
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gree [of velocity] in a local motion  there corresponds a certain lineal distance 
which would be described in some time by a motion with just such a degree 
[of velocity] throughout.” 40 His con temporary William Heytesbury pro-
posed a similar conception in the following passage describing nonuniform 
motion: “In nonuniform motion, however, the velocity  will be attended at 
each instant by a line belonging to it which would be described by a point 
moving with the fastest motion if it  were moved uniformly for a time with 
that degree of velocity by which it is moved in the same instant, at any given 
instant what ever.” 41 Clagett translates the beginning of this passage as “In 
nonuniform motion, however, the velocity at any given instant  will be mea-
sured by the path which would be described by the most rapidly moving 
point” (1959, 236).42 Consequently, he attributes to Heytesbury the concept 
of velocity at an instant, or instantaneous velocity: “For him instantaneous 
velocity is to be mea sured or determined by the path which would be de-
scribed by a point if that point  were to move during some time interval with 
a uniform motion of the velocity possessed at the instant” (237). If, however, 
we bear in mind the concept of velocity I have been urging as the norm, the 
velocity in question is that of the  whole motion: what Heytesbury and 
Swineshead are both  doing in  these passages is justifying their repre sen ta-
tion of the intension of motion at any instant by an extended line represent-
ing the degree of velocity at that instant.

Clagett draws attention to Galileo’s employment of the terminology and 
conceptual apparatus of the Merton School (1959, 237), giving an excerpt 
from the Discorsi in Crew and de Salvio’s translation, which he has altered 
in parts to a “very literal” translation so as “to reveal more clearly Galileo’s 
dependence on the Merton vocabulary”:

To put the  matter more clearly, if a moving body  were to continue its motion 
with the same degree or moment of velocity [gradus seu momentum veloci-
tatis] it acquired in the fi rst time- interval, and continue to move uniformly 
with that degree of velocity, then its motion would be twice as slow as that 
which it would have if its velocity [gradus celeritatis] had been acquired in 
two time intervals. And thus, it seems, we  shall not be far wrong if we as-
sume that increase in velocity [intentio velocitatis] is proportional [fi eri 
juxta] to the increase of time [temporis extension]. (Clagett 1959, 251)

Th is is all very revealing. Clagett has correctly substituted “degree or mo-
ment of velocity” for Crew and de Salvio’s plain “speed,” but he has left  un-
changed their translation of gradus celeritatis as “velocity” when a literal 
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translation of the Latin would be “degree of swift ness.” He has then changed 
their “increment of speed . . .  proportional to increment of time” to “increase 
in velocity . . .  proportional to increase of time,” when a “very literal” trans-
lation would be “if we suppose the intension of velocity to occur in propor-
tion to the extension of time.”  Here Galileo is following the Merton theorists 
in representing the intension or degree of velocity at each instant by a line 
proportional to the time of fall—“the extension of time.” Clagett, on the 
other hand, concludes that “Galileo in this passage compared the instanta-
neous velocities at the end of the fi rst time- period and at the end of the 
second time- period.” As should by now be clear, I believe that this is an 
anachronistic projection of a modern conceptual understanding back onto 
Galileo and the Merton School. It echoes, and perhaps has its source in, Koy-
ré’s comment on this same passage: “ ‘Th e intension of the speed’ or ‘the 
degree of speed’ is the instantaneous speed of the moving body” (Koyré 
1978, 124n136). For further discussion of the gulf between the medieval and 
modern repre sen ta tions of motion, I defer to the excellent analy sis given by 
Damerow et al. (1992).

mersenne and discretist accounts of  free fall

Again, I am not denying that Galileo’s ideas are the proximate source of our 
modern conception. But the transformation of his ideas was a complex his-
torical pro cess involving many aspects that I can at best gesture at  here. Th e 
most salient consideration is that we have so far been treating motion en-
tirely in isolation from any consideration of its cause. For even if Galileo’s 
mathematical treatment of nonuniform motion is accepted, in the absence 
of an account of the cause of this motion one is not obliged to agree that this 
is how  free fall actually occurs. Now, if  there is one  thing that the propo-
nents of the emerging mechanical philosophy did not dispute in Aristo-
tle’s physics, it was that all changes of motion are eff ected by bodies in 
contact. Given this, what ever the precise cause of gravity, it seemed to most 
seventeenth- century thinkers that the action on a body resulting in its fall-
ing at an accelerated rate should be explained in terms of the impacts on it 
of other moving particles: hence the heavy emphasis on the rules of colli-
sion. Th us one could accept Galileo’s princi ple that increases in velocity are 
always proportional to the time of fall without having to accept his claim 
that in  actual fact acceleration does “occur continually from moment to mo-
ment, and not interruptedly from one quantifi ed part of time to another.” 43
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Th is consideration was particularly germane to the reception of and de-
velopment of Galileo’s account of fall. At the center of the dissemination of 
Galileo’s work in France and beyond was the Minim  Father Marin Mer-
senne, who discussed it in several works of the 1630s and 1640s. As has been 
demonstrated with  great lucidity by Carla Rita Palmerino (1999; 2010), Mer-
senne’s growing skepticism over the truth of Galileo’s account of fall during 
this period was largely conditioned by such worries. In par tic u lar,  there  were 
two diffi  culties raised by Descartes that had ever greater infl uence on Mer-
senne’s skepticism regarding Galileo’s account: his conviction that  there had 
to be an initial impact, and that a body could not in fact go through an  actual 
infi nity of degrees of speed.44  Th ese two worries combined to suggest that a 
more acceptable account of fall might still be consistent with the empirical 
facts: a very large but fi nite number of discrete increases in uniform motion 
caused by the impacts of subtle  matter, each lasting for a very small but fi -
nite moment.

As I have argued elsewhere (Arthur 2011), precisely such a model had 
been suggested by Beeckman to Descartes in their fi rst encounter in 1618. 
Beeckman had conceived the acceleration of the falling body to occur by 
successive discrete tugs resulting in successive equal increments of the force 
of motion in equal moments, with the previously acquired increments in the 
force of motion being conserved. Th us in the second moment it has twice 
the force of motion as in the fi rst, and so covers twice the space it did in that 
moment. So as a result of  these discrete tugs occurring at the beginning of 
each successive equal moment or physical indivisible of time, the speeds  will 
be as 1, 2, 3, 4,  etc. in the successive moments; and given the equality of mo-
ments, the distances  will therefore also be as 1, 2, 3, 4,  etc. in the successive 
moments, that is, in arithmetical progression.45 Th us in two hours each di-
vided into 4 moments, the speeds  will be as 1, 2, 3, 4, and 5, 6, 7, 8, with 
proportional distances covered in each moment. So  aft er one hour the 
total distance covered would be as 1 + 2 + 3 + 4 = 10, and  aft er 2 hours, 
10 + 5 + 6 + 7 + 8 = 36, giving the ratio of the space covered in one hour to that 
covered in two as 10:36. By increasing the number of moments in each hour, 
the ratio can be made arbitrarily close to the ratio 1:4, as Beeckman noted in 
his diary in 1618. One can, in fact, derive a general formula. If n is the number 
of moments into which each hour is divided, the ratio between the distance 
D1 covered in the fi rst hour to the distance D2 covered in two hours  will be

D1 : D2 = 1/2 n/(n + 1) : n (2n + 1) = (1 + 1/n) : (4 + 2/n)
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Almost thirty years  later, as Palmerino (2010) reports, Fabry made exactly 
the same argument in his Tractatus physicus de motu locali: “A naturally ac-
celerated motion is not propagated through all degrees of slowness. For  there 
are as many degrees of this propagation as  there are instants through which 
this motion endures, since in  every single instant a new accession of impe-
tus occurs; but  there are not infi nitely many instants, as we  will demonstrate 
in our Metaphysics.” 46 Th us each  actual moment or instant corresponds to 
the duration of a uniform motion, with successive increases in this motion 
caused by the collision or tug of what ever particles are responsible for grav-
ity. Consequently,  there was no way to decide empirically between Galileo’s 
continuist law and this discretist rival: the moments could always be sup-
posed small enough to make any discrepancy smaller than what could 
be empirically discerned. But the discretist law of Beeckman and Fabry had 
the dual advantage that it did not presuppose an infi nity of degrees of 
speed, and that it conformed to the kind of  causes sanctioned by the me-
chanical philosophy.

conclusion

In conclusion, let me now turn to the historiographical issues I raised in the 
opening section. What I have tried to show in adequate detail is that the pro-
jection back onto Galileo and Descartes of the modern mathematical un-
derstanding of the motion of  free fall is seriously anachronistic. It supposes 
that the required concepts for a correct understanding— the modern con-
cept of instantaneous velocity, of motion as a function relating varying 
instantaneous velocities to the in de pen dent variable time, of gravitational 
acceleration as truly continuous— were all available prior to the establish-
ment of classical mechanics. As Damerow, Freudenthal, McLaughlin, and 
Renn comment, such a “position  either contains an implicit denial that con-
ceptual development takes place at all, since the concepts remain the same 
as before, or  else must claim that a conceptual development preceded the 
discovery of the central laws of a new science” (1992, 2). Th ey argue that 
the classical concepts are “rather the outcomes of the establishment of the 
law [of  free fall] than its prerequisites” (3).

Th is, however, is still to look at the history in terms of how it leads to the 
modern understanding of  free fall. Th at is part of what interests us, of course. 
But once we peeled back the veil of assumed modern concepts, we found 
revealed a certain way of understanding motion with its own conceptual 
and mathematical trappings. If velocity is an aff ection of motion, and mo-
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tion is a change of place occurring through some stretch of time, then  there 
can be no such  thing as an instantaneous velocity. Also, if velocity is the 
swift ness with which a par tic u lar motion is accomplished, then the veloci-
ties of two motions through equal spaces can be compared, and so can the 
velocities of two motions through equal times. For such a conception the 
theory of proportions seemed to be wholly adequate, and as we have seen, 
this is why neither Galileo (initially) and Descartes thought they could trans-
late back and forth between the velocity of one motion being three times as 
fast as another through equal spaces to the fi rst motion completing three 
times as much space as the second in equal times. Of course, this led to in-
tractable diffi  culties when applied to nonuniform motion. But where  these 
mathematical diffi  culties led Galileo to a realistic treatment of degrees of 
velocity, in which infi nitely many of them “add” timewise into an overall 
velocity, to his opponents  these same diffi  culties, coupled with the diffi  cul-
ties of the composition of the continuum facing the Galilean approach, sug-
gested that the only way successfully to treat  free fall was in terms of discrete 
increments of uniform velocity. Th is, moreover, was in keeping with the 
mechanical philosophy, where all forces act by discrete tugs or pushes of 
microparticles, whereas the continuist account of acceleration lacked a plau-
sible causal account.

Again from a retrospective point of view, one could conceive the epi-
sodes discussed  here in terms of “obstacles” to pro gress, like the obstacles 
épistémologiques suggested by Gaston Bachelard. Th us, so long as velocity 
was conceived as an aff ection of a motion achieved over time, scholars  were 
prevented from forming the concept of instantaneous velocity; likewise, 
conceiving it as the swift ness with which an overall motion was accom-
plished, while enabling a treatment through the theory of proportions, was 
an impediment to a functional interpretation of motion, and to a successful 
treatment of nonuniform motion. But such a description still seems to pre-
suppose a view of the history of mathematical physics as a linear progres-
sion to modern concepts taken as unassailable truths, the fi nishing line of 
the hurdler’s race. One can say that the theory of proportions that went along 
with the Aristotelian conception of velocity was an obstacle to the forma-
tion of the modern concept only  aft er that modern concept has been formed, 
but  there is no guarantee that this is the only correct way to conceive mo-
tion, that  there is a unique linear progression from the early seventeenth 
 century to a perfectly correct modern concept. (Indeed, if we look at “mo-
tion with res pect to cause” in a modern context, we again fi nd the actions 
of continuous forces explained in terms of the collisions of microparticles; 
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and in this quantum context, a realistic picture is much more elusive than it 
was classically.)

I believe the situation is better captured by a notion I have introduced 
elsewhere (Arthur 2012), but which I have not yet fully developed. Th is is the 
notion of “epistemic vectors.”  Th ese are aspects of theorizing, usually em-
bodying a mathematical framework, that both impel and constrain think-
ing in a certain direction, without that implying that they have a known 
outcome or that they are necessarily an impediment. In that res pect they 
diff er from Bachelardian obstacles. Th ey have something in common with 
Kuhn’s idea of an exemplar, in that they may implicitly involve certain prac-
tices or ways of approaching prob lems. But they diff er from exemplars in 
that they are implicit  drivers of thought rather than exemplary components 
of an established paradigm that usually have a strong, explicit pedagogical 
function. Th us the law of  free fall does become an exemplar  aft er the further 
contributions of Huygens, Newton, and Leibniz; but in the period we have 
been investigating, it has not yet become so,  because the ideas constituting 
that exemplar are still in the pro cess of being developed. Th e conception of 
velocity as the swift ness with which an overall motion is accomplished, to-
gether with the theory of proportions that accompanies it, is an epistemic 
vector; so is the conception of overall velocity as being representable by an 
area, with lines in that area representing degrees of velocity; so is the idea that 
changes in motion must be eff ected by the impacts of bodies.  Th ese vectors do 
not necessarily push theorizing in the same direction: the idea is that science 
progresses unevenly by the joint action of such vectors. Positing them helps to 
explain commonalities in the thinking of historical actors— for example, the 
fact that the young Galileo and Descartes both make what appears in hind-
sight to be the same  mistake—as well as why what seem to us as right views 
 were opposed— for example the opposition to Galileo’s account of fall by 
many of his contemporaries, whom Drake regarded as merely benighted— 
why certain options did not occur to them, or why they persisted in pro-
ceeding down what appear to us as blind alleys. But I  will leave a thorough 
explication of this notion of epistemic vectors for another occasion.

notes

Th is chapter grew out of research conducted in the Fisher Rare Books Li-
brary at the University of Toronto in 2001–2. Previous versions of it  were 
read in Dubrovnik (31st International Conference on the Philosophy of 
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Science April 2004), Winnipeg (Canadian Society for the History and 
Philosophy of Science, Annual Meeting, June 2004), Pisa (Workshop on 
the Contested Expanding Role of Applied Mathe matics from the Re nais-
sance to the Enlightenment, September 2010), and London, Ontario (at 
the Workshop on the Language of Nature at the Rotman Institute, Octo-
ber 2012). I am grateful to my audiences  there for their comments, and es-
pecially to Geoff rey Gorham and the other participants in the Language of 
Nature workshop for their helpful comments and advice.
 1.  Here “law” should not be understood to connote a universal law of 
nature— see Daniel Garber’s chapter in this volume.
 2. As we  shall see  later, much the same point has been made by Dam-
erow et  al. (1992) and by Jullien and Charrak (2002). My thanks to Dan 
Garber for drawing my attention to the latter during the workshop.
 3. “Ma perchè l’accelerazione si fa continuamente di momento in mo-
mento, e non intercisamente di parte quanta di tempo in parte quanta” 
(Dialogo; Galilei 1897, 162). All translations given in this chapter from the 
Latin, Italian, and French are my own. En glish translations of all relevant 
texts may also be found in Damerow et al. (1992).
 4. “cioè gli spazzii passati dal moto naturale esser in proporzione dop-
pia dei tempi, et per conseguenza gli spazii passati in tempi eguali esser 
come i numeri impari ab unitate” (Galilei, Opere 10, 115; Koyré 1978, 111).
 5. “Et il principio è questo: che il mobile natu ral vadia crescendo di 
velocità con quella proportione che si discosta dal principio del suo moto; 
come, v.g., cadendo il grave dal termine a per la linea abcd suppongo che il 
grado di velocità che ha in c al grado di velocità che hebbe in b esser come la 
distanza ca alla distanza ba et così conseguentemente in d haver grado di 
velocità maggiore che in c secondo che la distanza da è maggiore della ca.” 
(Galilei, Opere 10, 115; Koyré 1978, 111).
 6. See Ernst Mach, Die Mechanik ([1883] 1973, 245–46); En glish trans-
lation in Mach 1902, 247–48.
 7. Th e logarithms can be taken to any base, but  here, as throughout this 
chapter, I  will take them to base e (Naperian logarithms), which, for visual 
clarity, I write loge x rather than the usual ln x.
 8. “in tempi eguali si facciano eguali additamenti di velocità; . . .  
l’accelerazione loro vadia crescendo secondo che cresce il tempo e la dura-
zione del moto” (Galilei 1898, 202).
 9. “Mi pare che con chiarezza forse maggiore si fusse potuto defi nire, 
senza variare il concetto: Moto uniformemente accelerato esser quello, nel 



106 richard t.  w.  arthur

qual la velocità andasse crescendo secondo che cresce lo spazio che si va 
passando” (ibid.).
 10. “Moto equabilmente, ossia uniformemente accelerato, diciamo 
quello che, a partire dalla quiete, in tempi eguali acquista eguali momenti 
di velocità” (ibid., 205).
 11. See Mach ([1883] 1902, 248; 1973, 246).
 12. Th is passage from Leonardo is quoted from Koyré (1978, 72).
 13. “Th e pro cess which gave rise to modern physics consisted in an at-
tempt to rationalize, in other words, geometrise, space, and to mathema-
tize the laws of nature” (Koyré 1978, 73).
 14. Garber (1992); see also Ariew chapter 4 in this volume.
 15. Burtt 1924, 95; see also p. 262 on the “de- spiritualization of nature.”
 16. See Aristotle, Physics, 220 a8– a21 (Aristotle 1996, 107–8).
 17. Again, cf. Aristotle: “Now, what is before and  aft er is found primar-
ily in place. In that context it depends on position, but  because it is found in 
magnitude, it must also be found, in an analogous fashion, in change. And 
since time always follows the nature of change, what is before and  aft er ap-
plies also to time” (Physics, 219 a14– a18; Aristotle 1996, 105).
 18. “gli infi niti instanti che sono nel tempo DA, corrispondenti a gli in-
fi niti punti che sono nella linea DA” (Galilei 1897, 162).
 19. Th is notion of velocity as an aff ection of a body’s motion taken as a 
 whole was still current even signifi cantly  later. Giusti (1990, xxx) cites Sac-
cheri’s Neostatica from 1708, and gives the following quotation from the De 
legibus gravitatis of Paolo Frisi, who was professor of mathe matics in Pisa 
from 1756 to 1764: “Celerity is that aff ection of a moving body which occurs 
so that more or less space is covered in a given time.” Giusti, however, insists 
that Galileo employs two types of velocity in accelerated motion, the “veloc-
ity with which a moving body traverses a given line,” and the degree of 
velocity (xxxiv). My subtle disagreement with him is that I do not think that 
“degree of velocity” is a velocity (even though in unpublished manuscripts 
Galileo does sometimes call it a velocity);  here we are dealing with a stage in 
the transition to the concept of instantaneous velocity, but we are not  there 
yet. See Damerow et al. (1992) for detailed arguments to the same eff ect.
 20. As noted earlier, on discovering Jullien’s and Charrak’s book in the 
late stages of composition of this chapter, I discovered that many of my 
points about the anachronism of reading the modern functional view back 
into the originators of classical mechanics had already been made with 
 great clarity in Damerow et  al. (1992). As Jullien and Charrak remark, 
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summarizing Damerow et al.: “Elle consiste en un vaste anachronism en 
very duquel on mobilise les concepts «classiques» de vitesse instantanée, de 
summation intégrale (ou au moins de limite) et de function” (2002, 36–37).
 21. Again, much the same point has been lucidly argued by Damerow, 
Freudenthal, McLaughlin, and Renn, who write: “From the point of view of 
Aristotelian natu ral philosophy— where no equivalent to a functional de-
pendence of motion on a certain pa ram e ter exists, and where the velocity of 
motion always refers to its overall extension in space and time— the alterna-
tive: velocity stands  either in such a specifi ed relation to space or  else to 
time, cannot sensibly be posed” (1992, 1–2).
 22. “Vanno dunque continuamente crescendo i gradi di velocità in tutti 
i punti della linea af secondo l’incremento delle parallele tirate da tutti i 
medesimi punti. In oltre, perché la velocità con la quale il mobile è venuto 
da a in d è composta di tutti i gradi di velocità auti in tutti i punti della linea 
ad, e la velocità con che ha passata la linea ac è composta di tutti i gradi di 
velocità che ha auti in tutti i punti della linea ac, adunque la velocità con che 
ha passata la linea ad, alla velocità con che ha passata la linea ac, ha quella 
proporzione che hanno tutte le linee parallel tirate da tutti i punti della linea 
ad sino alla ah, a tutte le parallele tirate da tutti i punti della linea ac sino 
alla ag” (Galilei 1898, 373).
 23. “Adunque la velocità con che si è passata la linea ad, alla la velocità 
con che si è passata la linea ac, ha doppia proporzione di quell ache ha da a 
ca. E perché la velocità alla velocità ha contraria proporzione di quella che 
ha il tempo al tempo (imperò che il medesimo è crescere la velocità che sci-
emare a tempo), adunque il tempo del moto in ad al tempo del moto in ac ha 
subduplicata proporzione di quella che ha la distanza ad alla distanza ac. 
Le distanze dunque dal principio del moto sono come i quadrati de i tempi, 
e, dividendo, gli spazi passati in tempi eguali sono come i numeri impari ab 
unitate” (Galilei 1898, 373–74).
 24. My analy sis  here agrees with that of Giusti, who criticizes Galileo 
for an equivocation in his use of the term “inverse proportion (contraria 
proporzione)” (Giusti 1990, xxxvi); but it is at odds with that of Jürgen Renn 
in Damerow et al. (1992). Renn claims that Galileo’s reasoning has “the ad-
vantage [over Descartes’] of yielding the correct result.” For, unlike Des-
cartes, Galileo “inverts . . .  the double proportionality of the velocities by a 
transition to a ‘half ’ or ‘mean’ proportionality of the times thus obtaining 
the law of fall in its mean proportional form” (167). I do not see that this re- 
expressing of the proportion also involves an inversion.
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 25. “Ora, se consideriamo attentamente la cosa, non troveremo nessun 
aumento o incremento più semplice di quello che aumenta sempre nel 
medesimo modo. Il che facilmente intenderemo considerando la stretta con-
nessione tra tempo e moto” (Galilei 1898, 197).
 26. “[lo possiamo] in quanto stabiliamo in astratto che risulti uniforme-
mente e, nel medesimo modo, continuamente accelerato, quel moto che in 
tempi eguali, comunque presi, acquista eguali aumenti di velocità” (Galilei 
1898, 197–98).
 27. “Il tempo in cui uno spazio dato è percorso da un mobile con 
moto uniformemente accelerato a partire dalla quiete, è eguale al tempo 
in cui quel medesimo spazio sarebbe percorso dal medesimo mobile 
mosso di moto equabile, il cui grado di velocità sia sudduplo [la metà] del 
grado di velocità ultimo e massimo [raggiunto dal mobile] nel pre ce dente 
moto uniformemente accelerato” (Galilei 1898, 208).
 28. “E sì come la BC era massima delle infi nite del triangolo, rappre-
sentanteci il massimo grado di velocità acquistato dal mobile nel moto ac-
celerato . . .  passi con moto equabile nel medesimo tempo spazio doppio al 
passato dal moto accelerato” (Galilei 1897, 163; 1953, 229).
 29. Oresme 1968, 559–61; quoted from Damerow et al. 1992, 18.
 30. Varron 1584, 12ff .
 31.  Here I am reading the singular ‘la velocità’ and ‘della velocità’ for 
the text’s plurals, ‘le velocità’ and ‘delle velocità,’ which do not appear to 
make sense in the context, although it is perhaps explicable in terms of an 
implicit comparison of pairs of velocities in a proportion.
 32. “Quando le velocità hanno la medesima proporzione che gli spazii 
passati o da passarsi, tali spazii vengon passati in tempi eguali; se dunque le 
velocità con le quali il cadente passò lo spazio di quattro braccia, furon doppie 
delle velocità con le quali passò le due prime braccia (sì come lo spazio è dop-
pio dello spazio), adunque i tempi di tali passaggi sono eguali: ma passare il 
medesimo mobile le quattro braccia e le due nell’istesso tempo, non può aver 
luogo fuor che nel moto instantaneo: ma noi veggiamo che il grave cadente fa 
suo moto in tempo, ed in minore passa le due braccia che le quattro; adunque 
è falso che la velocità sua cresca come lo spazio” (Galilei 1898, 203–4).
 33. Koyré [1939] 1978, 116n51. Koyré cites in this connection Mach’s 
Mechanik ([1883] 1973, 245) and also Paul Tannery (1926, 400ff ).
 34. Since writing this section I have discovered the detailed analyses of 
Descartes’ mathematical treatments of the law of fall in Damerow et al. 
(1992, chapter 2), and Jullien and Charrak (2002). But my analy sis of the “4/3 
proportion” diff ers from theirs, as we  shall see.
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 35. I have no explanation of why, having correctly identifi ed the Aristo-
telian theory of proportions at work in Descartes’ mathematization,  these 
authors go on to give an explanation of Descartes’ reasoning that appeals 
to the functional interpretation they earlier decry.
 36. “Il aboutit donc à une relation essentiellement diff érent de celle de 
Galilée, puisqu’elle reviendrait à considérer l’espace parcouru comme pro-
portionnel, non pas au carré du temps, mais à une puissance du temps dont 
l’exposant est la rapport de log2 à log4/3, c’est à dire environ 2,4 (AT I 75).” 
Quoted from Jullien and Charrak (2002, 121–22).
 37. “C’est le sens d’une note maladroit, car anachonique, de Tannery, qui 
construit une function exponentielle donnant les espaces par rapport à la 
variable temps” (Jullien and Charrak 2002, 121).
 38. In a letter to Mersenne in October 1631 Descartes writes that if a void 
and constant action of gravity are accepted, “ there would be no means of 
explaining the speed of this movement by numbers other than the ones I 
have sent you, at least ones that are rational; and I do not even see that it 
would be easy to fi nd irrational ones, nor any line in geometry which would 
explicate them better.” Tannery apparently took Descartes’ remark to li-
cense an interpretation in terms of exponential powers, but as Jullien and 
Charrak argue (1992, 123), it is more natu ral to see him as rejecting any 
such an interpretation as unphysical.
 39.  Here the fi rst diagram is from the 1634 letter, with the lettering of 
the 1629 letter. Th e second is my own.
 40. “Causa autem quare penes lineam descriptam velocitas illius motus 
attendit, est hoc: cuicunque gradui in motu locali correspondet certa dis-
tantia linealis quae in tanto tempore et in tanto cum partibus tali gradu 
describeretur” (Clagett 1959, 245).
 41. “In motu autem diff ormi, in quocunque instanti attendetur veloci-
tas penes lineam quam describeret punctus velocissime motus, si per tem-
pus moveretur uniformiter illo gradu velocitatis quo movetur in eodem 
instanti, quocunque dato” (ibid., 240).
 42. Th e expression “by the most rapidly moving point” occurs  because 
 these authors are considering the motion of a rotating radius. See Clagett 
(1959, 216).
 43. “Ma perchè l’accelerazione si fa continuamente di momento in mo-
mento, e non intercisamente di parte quanta di tempo in parte quanta” 
(Galilei 1897, 162).
 44. See Palmerino 2010 for details.
 45. See Arthur 2011 for details.
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 46. “Motus naturaliter accelerato non propagatur per omnes tarditatis 
gradus; quia tot sunt huius propagationis gradus, quot sunt instantia, qui-
bus durat hic motus, cum singulis instantibus nova fi at impetus accessio, 
sed non sunt infi nita instantia, ut demonstrabimus in Metaphysica.”
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Some of the motivation for this volume is the reevaluation of a 
prominent historiographical orientation of twentieth- century research on 
the scientifi c revolution, in light of the proliferation of novel methodolog-
ical orientations and studies in the last generation of scholars. Th e histo-
riographical orientation at issue is what is called the mathematization of 
nature; its exemplary proponents are Alexandre Koyré, Eduard Jan Dijk-
sterhuis, and Edwin Arthur Burtt.1 Th is should be a welcome reevalua-
tion, especially since the position has held fairly strongly for almost a 
 century. Burtt published the fi rst edition of his Metaphysical Founda-
tions of Modern Science in 1924.2 Dijksterhuis reiterated in large part the 
historical- philosophical accounts implicit in Burtt’s work in 1950.3 And 
the views of Burtt and Dijksterhuis found their historiographical cham-
pion in Koyré’s Husserlian-  and Bachelardian- inspired position.4 In 1950 
Dijksterhuis already knew and cited a number of Koyré’s  theses from his 
publications available in the 1940s, such as Koyré’s thesis on the mathema-
tization of physical space and his devaluation of experimental approaches. 
As Dijksterhuis states with res pect to the fi rst thesis, “Th e substitution of 
the world- picture of classical physics for that of Aristotle involved a radical 
change in the conception of space in which the phenomena of nature oc-
cur. Without explic itly saying so, scientists had always thought of the latter 
as physical space to distinguish it from the geometrical space to which the 
reasonings of mathe matics related . . .  In the sixteenth and seventeenth cen-
turies, however, this distinction was becoming blurred . . .  Koyré charac-
terized this by the term ‘mathematization of physical space’ ” (Dijksterhuis 
1969, 377).5

4

the mathematization of nature in descartes 
and the fi rst cartesians

roger a r iew
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Th e reference Dijksterhuis gives is to Koyré’s 1939 Études galiléennes. 
 Th ere Koyré does state that one of the major changes between classical and 
modern science is “the geometrisation of space,” that is to say, “the substitu-
tion for the concrete space of pre- Galileo physics of the abstract space of 
Euclidean geometry. It was this substitution that made the invention of the 
law of inertia pos si ble” (1978, 3).6

Th e second Koyré thesis referred to by Dijksterhuis is exemplifi ed in 
his judgment of Francis Bacon’s lack of importance for early modern sci-
ence. Dijksterhuis cites again from Koyré’s Études galiléennes, in large part 
approving of Koyré’s view that Bacon “did not make a single positive con-
tribution to science, and in some cases he entirely failed to recognize the 
merits of  others who had done so. Th is is why Koyré calls it a mauvaise 
plaisanterie to regard him as one of the found ers of modern science” (Dijk-
sterhuis 1969, 396–97).7 And, indeed, Koyré does say that the role of Bacon 
“in the history of the scientifi c revolution was completely negligible,” and 
reinforces this judgment by asserting in a footnote, as Dijksterhuis said, that 
“ ‘Bacon, the founder of modern science’ is a joke, and a bad one at that.” 
Koyré continues, stating: “In fact, Bacon understood nothing about sci-
ence. His manner of thinking was closer to alchemy and magic . . .  to a 
thinker of the Re nais sance than to that of a Galileo or even a Scholastic” 
(Koyré 1978, 39).

Th e two  theses go hand in hand, as can readily be shown by articles on 
Galileo published by Koyré in 1943.8 For Koyré, experience is an obstacle in 
the establishment of modern science. As Koyré says in one article: “We are 
so well acquainted with, or rather so well accustomed to, the concepts which 
form the basis of modern science, that it is nearly impossible for us to ap-
preciate rightly  either the obstacles that had to be overcome for their estab-
lishment, or the diffi  culties that they imply and encompass” (1968, 3; my 
emphasis).9 Koyré then states in another article: “One must not forget that 
observation and experience, in the sense of brute, common- sense experi-
ence, did not play a major role—or if it did, it was a negative one, the role 
of obstacle—in the foundation of modern science” (1968, 18; my emphasis). 
Th e connection between Koyré’s two  theses— the devaluation of experience 
and the mathematization of nature— lies in his distinction between experi-
ence and experiment:

It is not experience but experiment which played— but only  later— a  great 
positive role. Experimentation is the methodical interrogation of nature, an 
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interrogation which presupposes and implies a language in which to formu-
late the questions, and a dictionary which enables us to read and interpret 
the answers. For Galileo it was in curves and circles and triangles, in math-
ematical or even more precisely, in geometrical language— not in the lan-
guage of common sense or in that of pure symbols— that we must speak to 
Nature and receive her answers. Yet obviously the choice of language, the 
decision to employ it, could not be determined by the experience which its 
use was to make pos si ble. (Koyré 1968, 18–19)

Koyré’s devaluation of experience has the further consequence that Galileo’s 
observations and experiments are likewise devalued; as Koyré states: “It is 
obvious that the Galileo experiments are completely worthless: the very per-
fection of their results is a rigorous proof of their incorrection” (1968, 94).10

So what is one to do; that is, how is one to reevaluate this prominent his-
toriographical orientation? Well, one could point out that Koyré is simply 
historically wrong about his devaluation of experience, wrong about Francis 
Bacon, and wrong about Galileo’s experiments.11 Worse yet, his perspective 
fails to appreciate the rise of scientifi c socie ties, the social nature of the epis-
temology of observation, and so forth. But such an objection is easily coun-
tered by simply casting off  what Koyré thinks of as an integral part of his 
view (the necessity of the mathematization of nature as preliminary to any 
genuine experimental culture) and accepting just a portion of his historio-
graphical orientation, for example, mathematization of nature by itself, as 
one of the crucial ele ments of early modern science as contrasted with past 
science, along with experimental culture by itself. We can see this rejoinder 
given numerous times, as in Floris Cohen’s review of Joella Yoder’s book 
Christian Huygens and the Mathematization of Nature. Cohen states: “It is 
well known that, on the topic of Galileo’s experiments, Koyré has been 
proved simply wrong—to the extent that he declined to take literally in Gal-
ileo’s own statements what we now know should indeed be taken literally. 
Granting so much does not, however, render all Koyré had to say on the 
mathematization of nature worthless” (Cohen 1991, 83). Still, the historical 
studies of the “last generation of scholars” about the culture of experiment 
require the mathematization of nature to become a less global historio-
graphical thesis, but perhaps to remain an impor tant one.

A more promising reevaluation would consist in reconsidering the 
mathematization of nature from the perspective of “novel methodological 
orientations,” and in par tic u lar, of contextual history.  Here one could point 
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out that when we talk about the “mathematization of nature” we mean dif-
fer ent  things with regard to diff  er ent thinkers. When one focuses on what 
mathematizing nature would be for Galileo, for Descartes, Huygens, or 
Newton, we fi nd that  these are radically diff  er ent activities; what Galileo 
tried to do in this regard is clearly diff  er ent from what Descartes tried to do, 
or what Huygens, Newton, and  others tried to do. Th e mathematization of 
nature as an account of the scientifi c revolution or early modern science be-
gins to look like our twentieth- century invention, perhaps a construction 
we are forcing on the past.12

Such a thesis, however right it seems to me, would be beyond the scope 
of a single chapter. Instead I propose to examine the mathematization of 
nature for Descartes and the Cartesians. I  will try to show that, from the 
perspective of a more contextual history, the thesis that mathematization of 
nature refers to radically diff  er ent ele ments in diff  er ent thinkers can be re-
covered in a single thinker; it applies to Descartes by himself. Basically,  there 
is no one  thing one can call the mathematization of nature in Descartes, 
perhaps no mathematization of nature at all, if the concept is considered 
narrowly. I  will then corroborate this historical position by demonstrating 
that vari ous Cartesians in the seventeenth  century understood Descartes 
diff erently on  these issues. Th e Cartesians have  little to say about the math-
ematization of nature when viewed as a  grand narrative for the scientifi c 
revolution, though their remarks on the relations between mathe matics and 
physics advance vari ous aspects of Descartes’ understanding about  those re-
lations and contrast with the way we conceive of them as part of that  grand 
narrative. But fi rst, I need to discuss the views of Burtt and Dijksterhuis on 
Descartes and the mathematization of nature.

burtt and dijksterhuis on descartes’ 
mathematization of nature

In his Metaphysical Foundations of Modern Science, Burtt’s chapter on Des-
cartes proceeds somewhat chronologically. Burtt refers to Descartes’ early 
interest in mathe matics, including what he calls the “remarkable experience” 
of November 10, 1619, which confi rmed for Descartes the “trend of his pre-
vious thinking and gave the inspiration and the guiding princi ple for his 
 whole life- work,” namely, according to Burtt, the conviction “that mathe-
matics was the sole key needed to unlock the secrets of nature” (Burtt 
[1924] 1954, 105). Burtt follows this introduction with a section called 
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“Mathe matics as the Key to Knowledge.”  Th ere, Burtt details Descartes’ 
Rules, which he calls “a series of specifi c rules for the application of his all- 
consuming idea,” starting with Rule 1, “that all the sciences form an or-
ganic unity” and interpolating something from the Search for Truth that 
“all the sciences must be studied together and by a method that applies to all” 
(106–7). He asserts that “the method must be that of mathe matics, for all 
that we know in a science is the order and mea sure ment revealed in its phe-
nomenon” and, citing Rule 4, that “mathe matics is just that universal sci-
ence that deals with order and mea sure ment generally.” Burtt also asserts 
that “Descartes is at pains carefully to illustrate his thesis that exact knowl-
edge in any science is always mathematical knowledge” (107). He refers to 
the Rule 3 concepts of intuition and deduction (deduction now considered 
as mathematical deduction) as two steps of this mathematical method and 
introduces the  simple natures of Rule 14 “as discoveries of intuitions” (108). 
However this is where Burtt thinks Descartes goes astray: “As he proceeds 
from this point he is on the verge of the most far- reaching discoveries, but 
his failure to keep his thought from wandering, and his inability to work out 
the exceedingly pregnant suggestions that occur to him make them barren 
for both his  later accomplishments and  those of science in general . . .  [A]t 
the crucial points his thoughts wander, and as a consequence Cartesian 
physics had to be supplanted by that of the Galileo- Newton tradition” 
(109). Th e rest of Burtt’s (clearly whiggish) account consists of a generally 
negative report of Descartes’ views in the Princi ples— Descartes’ “soaring 
speculations”—as failing to live up to his initial fundamental mathematical 
intuition, producing something of mere historical, not scientifi c, signifi cance.

It is ironic that Burtt is so fi rmly convinced of his interpretation of Des-
cartes, based on a defective reading of a juvenile unfi nished manuscript, that 
he cannot make much sense of the Princi ples, Descartes’ mature published 
treatise, on which his reputation rested during the seventeenth  century. Th e 
situation, however, is not much better with Dijksterhuis, though the latter is 
somewhat more sober than the former. Again, we assert that in seventeenth- 
century science “the structure of the external world was essentially mathe-
matical in character and a natu ral harmony existed between the universe 
and the mathematical thought of the  human mind.” Dijksterhuis adds that 
“the standpoint taken by Descartes cannot be better described than by say-
ing that by carry ing this conception to its extreme he virtually identifi ed 
mathe matics and natu ral science” (Dijksterhuis 1969, 404). He then refers 
to Descartes’ tree of philosophy from the preface to the French edition of 
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the Princi ples. He recognizes that physics  there is depicted as rooted in 
metaphysics, and that “Mathe matics is not referred to,” but he adds that the 
foundation on which metaphysics is based is also not referred to, and ends 
with a rhetorical question: “Cannot the explanation of this be that it is math-
ematical thought, considered not with regard to its contents but to its form, 
which constitutes this foundation?” (404). I suppose rhetorical questions 
should not be answered, though the answer is clearly “no.”13 Still, to his 
credit, Dijksterhuis knows that one cannot fi nd the thesis of the mathe-
matization of nature in Descartes’ fi rst published work, the Discourse on 
Method. He rightly states that “the formulation of the four famous rules 
which are recommended as guiding princi ples for scientifi c thought is im-
mediately preceded by the statement that the author failed to fi nd the method 
he needed in the Analy sis of the Ancients and the Algebra of the Moderns” 
(404). He opines that Rule 1 of the Discourse, about evidence, “was appar-
ently inspired by the style of mathematical thought,” and adds that “the 
other three rules have been kept so vague and general that in the fi rst place 
they admit of diff  er ent interpretations and secondly they contain  little that 
is of specifi cally mathematical character” (405). Dijksterhuis cites with ap-
probation Leibniz’s calling them vacuous and mocking them, describing the 
method as like advising a chemist to “take what you have to take, do with it 
what you have to do, and you  will get what you desire” (404–5).

However, Dijksterhuis is quickly over his disappointment with Des-
cartes’ Discourse: “in order to become  really acquainted with the method of 
Descartes one should not read in the fi rst place the charming Discours, 
which is a causerie, rather than a treatise, but the . . .  Rules for the Direction 
of the Mind, which was already composed in 1629” (405).14 And, naturally, 
we now get the fact that the Rules contains an exposition of Mathesis Uni-
versalis, which, Dijksterhuis asserts, “Descartes always regarded as one of his 
greatest methodological discoveries.” At this juncture Dijksterhuis claims 
that Descartes wanted to see Mathesis Universalis applied in all the natu ral 
sciences, by which he means that Descartes prescribes the application of al-
gebraic methods to all  those branches of science that admit of quantitative 
treatment. He adds that Descartes also admits the possibility of “arranging 
propositions in deductive chains,” so he concludes that “the aim of the Car-
tesian method is indeed to cause all scientifi c thinking to take place in the 
manner of mathe matics, namely by deduction from axioms and by algebraic 
calculation” (405). Dijksterhuis in this way rejoins the thesis of the mathe-
matization of nature and Burtt’s account. He shares Burtt’s disappointment 
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with Descartes: “Descartes did not get very far in carry ing out the concrete 
program of universal mathe matics in science,” though he asserts that “his 
metaphysical as well as his scientifi c thinking always followed a mathemati-
cal pattern” (406). Th e rest is a litany of Descartes’ failures, that is, more 
analyses of Descartes from the perspective of the pres ent: “if Descartes could 
have foreseen the  future of mathe matics . . .”; “Descartes never produced . . .”; 
“Th e modern reader, who is accustomed to fi nd more and more trou ble ex-
pended on this part of the pro cess of forming scientifi c concepts, may have 
some diffi  culty in looking upon the Cartesian way of studying science as a 
serious contribution to the methodology of scientifi c thought.” For Dijkster-
huis, as for Burtt, Cartesian physics is of mere historical importance; for 
Dijksterhuis, it was “an illusion” that enabled Descartes “to put before his 
contemporaries the transparent ideal of a rational system for the interpreta-
tion of nature that was to rely on none but mathematical and mechanical 
conceptions” (409).

Of course, Descartes did not put before his contemporaries any such 
ideal as described by Dijksterhuis and Burtt. He put before his contempo-
raries the arguments of the Discourse, Meditations, and Princi ples, but not 
 those of the Rules. Simply put, the Rules was not generally available in the 
seventeenth  century, though a few Cartesians had access to vari ous small 
portions of it, as was obvious in the fourth edition of the Port- Royal Logic 
(1674, 42) the work itself was fi rst published in Latin in Descartes’ Opuscula 
Posthuma only in 1701, with a Dutch- language version published in 1684. 
Th e main Cartesians published their works before the publication of the 
Rules, from circa 1654 to circa 1694, without any knowledge of its views. One 
might be able to argue that an analy sis of the Rules in the fashion of Burtt 
and Dijksterhuis could reveal Descartes’ deepest intuitions, but such an 
analy sis cannot provide any understanding of Descartes’ signifi cance or in-
fl uence for Cartesians or for anti- Cartesians or for seventeenth- century sci-
ence in general. Th is is the impor tant point to make.

A subsidiary point is that the interpretations of Dijksterhuis and Burtt 
about the Rules are deeply fl awed. Take Burtt’s assertion that “all that we 
know in a science is the order and mea sure ment revealed in its phenome-
non” or “Descartes is at pains carefully to illustrate his thesis that exact 
knowledge in any science is always mathematical knowledge.” When Des-
cartes gives an example of his method in the Rules, he talks about the prob-
lem of determining the anaclastic line, in which parallel rays are refracted 
in such a fashion that they all meet at a point. He does explain that  those 
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who limit themselves to mathe matics alone cannot investigate the prob lem, 
“since it does not belong to mathe matics, but to physics” (Descartes 1964–
76; AT, 10:394). A person who “looks for the truth in any subject”  will not 
fall into the same diffi  culty. Th at person can perceive clearly by intuition 
both mathematical and physical  matters, about the proportion of the  angles 
of incidence and  angles of refraction depending on the variation of  these 
 angles in virtue of the diff erence of the media and about the manner in 
which rays penetrate into a transparent body. Th e latter presupposes that 
the nature of illumination is known and what a natu ral power is in general. 
As Descartes says: “this is the last and most absolute term in this  whole 
sequence” (AT, 10:395). It is the intuition from which the prob lem  will be 
solved, from which evident knowledge of the anaclastic line is derived, ac-
cording to Descartes’ method (see Garber 2001, 85–110). I fail to see how the 
intuition about the nature of illumination or of a natu ral power would not 
be considered knowledge or has to be thought as mathematical knowledge, 
as Burtt would want it. Nor do I see how any of this can license Dijkster-
huis’s claim that “the aim of the Cartesian method is indeed to cause all 
scientifi c thinking to take place in the manner of mathe matics, namely by 
deduction from axioms and by algebraic calculation.”15 Burtt and Dijkster-
huis are so sure of their general thesis about the mathematization of nature 
that they construct their own Descartes from an unfi nished manuscript that 
Descartes himself never refers to; they then mostly neglect what he says in 
his mature published works. Worse yet, they are so sure of the mathemati-
zation of nature as the endpoint for physics that they criticize Descartes for 
failing to see what they think they perceive in pres ent science. In this pro-
cess, they cannot provide any understanding of Descartes’ views nor of what 
the Cartesians saw in Descartes. Th ey cannot provide an account of early 
modern science in relation to what preceded it or in relation to what suc-
ceeded it.

descartes on the relations between 
mathe matics and physics

It is not as if Descartes does not issue enough statements about what he con-
siders the relation among physics, metaphysics, and mathe matics in his 
published writings, the Discourse (1637), Meditations (1641–42), and Princi-
ples (1644–47), as well as in his Correspondence (published posthumously 
in three volumes, 1657–67).  Th ere are numerous pronouncements that 
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Descartes is looking for certainty at least equal to that of mathe matics; in 
the Discourse, he intimates that the real use that can be made of mathe-
matics is to extend its method into other realms (AT, 6:7), and to prepare the 
mind to follow the real philosophical method, which mathe matics presup-
poses (19–22). Th is last statement can lead one to consider that Descartes 
does not accept mathe matics as the foundation for all knowledge. In fact, 
early on he claims that his metaphysical demonstrations are more certain 
than geometrical demonstrations (AT, 1:145). But Descartes does say that all 
his “physics is nothing other than geometry” (AT, 2:68), and he speaks of 
“having reduced physics to the laws of mathe matics” (AT, 3:39). Th at is how 
Descartes’ anonymous correspondent in the letters used as preface to the 
Passions of the Soul seems to have understood Descartes: “the [Scholastic] 
Phi los o phers accept mathe matics as part of their physics,  because almost all 
of them are ignorant of it; but on the contrary, the true physics is a part of 
mathe matics” (AT, 11:314–15).16

 Th ere is also the last article of Princi ples (II, art. 64, AT, 8:78): “Th e only 
princi ples I accept or desire in physics are  those of geometry or abstract 
mathe matics,  because  these explain all natu ral phenomena and enable us to 
provide certain demonstrations of them” (AT, 7:78; 11:101).17 It is an impor-
tant article indeed, which Descartes published in a prominent work. What 
the text of the article explains is that Descartes recognizes “no  matter in 
corporeal  things apart from what can be divided,  shaped, and moved in all 
sorts of ways, that is, the one the geometers call quantity”— that “he consid-
ers in such  matter only its divisions, shapes, and motions”— because he does 
not want to admit anything as true “other than what has been deduced from 
[ these] indubitable common notions so evidently that it can stand for a 
mathematical demonstration.” Descartes ends his article by asserting that 
“since all natu ral phenomena can be explained in this way, I do not think 
that any other princi ples are  either admissible or desirable in physics [than 
the ones that are  here explained].” It is impor tant to note that the properties 
of  matter that Descartes accepts, the divisions, shapes, and motions of cor-
poreal  things, are not accepted  because they are geometrical or mathe-
matical, but  because they are the modes of extension that can be distinctly 
known. In Part I of the Princi ples, that is, the “metaphysical” portion, repre-
senting the Meditations, Descartes asserts that extended substance can be 
clearly and distinctly understood as constituting the nature of body (Princi-
ples I, art. 63, AT, 8:30-1) and that extension as a mode of substance can be 
no less clearly and distinctly understood as substance itself (Princi ples I, art. 



 m athem atiz ation of natu r e 121

64, AT, 8:31). Descartes then lists the properties or attributes of extension as 
their shapes, the situation of their parts, and their motions (Princi ples I, art. 
65, AT, 8:32). It happens that  these properties are what “the geometers call 
quantity.” But that is  because mathematicians rely on some of the same clear 
and distinct perceptions as natu ral phi los o phers do. Descartes roots his 
physics in a metaphysics that produces, at fi rst,18 a physics that looks the 
same as mathe matics, not  because it is rooted in mathe matics, but  because 
it is rooted in a metaphysics of clear and distinct ideas.19 But I do not think 
many scholars would have been tempted to call this the mathematization of 
nature or have considered it as an integral part of the scientifi c revolution.

cartesians and the relations between 
physics and mathe matics

It may be one  thing to write about Descartes’ deepest intuitions as we un-
derstand them and another to explicate his infl uence on his followers; that 
is, how he was understood by  others. When the issue is the scientifi c revolu-
tion, one’s account should resonate with the latter. It thus becomes relevant 
to understand how Descartes was understood by his followers. Th e Carte-
sians are a diverse group. Let me limit myself to a few representative think-
ers: Du Roure, Rohault, Le  Grand, and Régis. Le  Grand and Régis are famous 
for their attempts to publish multivolume Cartesian textbooks that would 
mirror what was taught in the schools, containing treatises on Cartesian 
logic, metaphysics, physics, and ethics. Le  Grand initially published a popu-
lar version of Descartes’ philosophy in the form of a scholastic textbook 
(1671), expanding it in the 1670s and 1680s. Th e work, Institution of Philoso-
phy, as it was called then, was then translated into En glish together with 
other texts by Le  Grand and printed in two large volumes as part of An En-
tire Body of Philosophy according to the Princi ples of the famous Renate Des 
Cartes (1694). On the continent, Régis issued his three- volume Système Gé-
néral selon les Principes de Descartes at about the same time (1691). Th e dif-
fi culties Régis encountered in obtaining permission to publish considerably 
delayed its publication. Th e vari ous portions of this work embody Régis’s 
adaptations of diverse works, both Cartesian and non- Cartesian: Antoine 
Arnauld’s Port- Royal logic (mostly excerpted); Robert Desgabet’s peculiar 
metaphysics;20 Rohault’s physics; and an amalgam of Gassendist, Hobbes-
ian, and especially Pufendorfi an ethics.21 Ultimately, Régis’s unsystematic 
(and very oft en un- Cartesian) Système set the standard for Cartesian 
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textbooks. Early attempts at setting out a complete Cartesian system be-
fore  those of Le  Grand and Régis included Du Roure’s multivolume La Phi-
losophie divisée en toutes ses parties (1654) and its (less Cartesian) successor 
Abrégé de la vraye philosophie (1665). Du Roure was one of the fi rst follow-
ers of Descartes, belonging to the group that formed around Descartes’ lit-
erary executor, Claude Clerselier.

Unlike Du Roure, Le  Grand, and Régis, who tried to publish complete 
“systems” of Cartesian philosophy, Rohault limited himself to natu ral phi-
losophy. He was the foremost proponent of Cartesian physics in the de cades 
immediately following the death of Descartes. In the mid-1650s he began to 
hold weekly lectures at his  house in Paris;  these “mercredis de Rohault” 
brought him to the attention of prominent Cartesians. He became Régis’s 
teacher and won him over to the cause of Cartesianism. Rohault was best 
known for his 1671 Traité de physique, which went through numerous edi-
tions and remained a standard textbook in Cartesian natu ral philosophy 
well into the eigh teenth  century, long  aft er Rohault’s death in 1672. Th e 
Traité de physique was initially translated into Latin in 1682 and then again, 
with annotations by Samuel Clarke, in 1697. Clarke’s Latin edition was 
translated into En glish in 1723 by his younger  brother John and published 
as Rohault’s System of Natu ral Philosophy. As the work went through mul-
tiple editions, Samuel Clarke increasingly “illustrated” it with “notes taken 
mostly out of Sr. Isaac Newton’s Philosophy.”

First, I need to touch on the question of what the Cartesians take as 
Descartes’ method in general. Th e answer is as expected: What they con-
sider as method varies somewhat, but does not involve Mathesis Universalis 
or anything from the Rules. For example, Du Roure’s section of the multi-
volume Philosophy on Cartesian logic consists of a summary of Discourse 
Part II, with a commentary on Descartes’ rules of method, in succeeding 
chapters. Du Roure’s view of the usefulness of  those precepts is infl uenced 
by Descartes’ preface to the French edition of the Princi ples. He recom-
mends Descartes’ logic in order for us to conduct our reason well: “But 
 because it depends considerably on usage, it is extremely advantageous to 
practice the rules on  simple and easy questions, such as  those of mathe-
matics. And when we  will have acquired some habit in discovering the 
truth, we must apply ourselves with care to Philosophy” (Du Roure 1654, 
183–84).22 Th is is the view of logic and mathe matics as tools for sharpening 
the mind, much like solving crossword puzzles, not as the foundation of 
physics.
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Th e Port- Royal Logic, which dominated in the second half of the seven-
teenth  century, thus also Régis’s Logique and Le  Grand’s Logick, all end with 
a section called “Method.” By method, however,  these writers mean analy sis 
and synthesis— which does not have to be anything particularly Cartesian23— 
though we do fi nd Descartes’ rules of method enumerated in the chapters 
on analy sis. Th e Port- Royal Logic lists Descartes’ four rules, saying that they 
are “general to all sorts of methods and not par tic u lar to the method of 
analy sis alone” (Arnauld 1674, 375) but then moves on to give fi ve rules of 
composition, focusing on  these and enlarging them by chapter 10 to eight 
principal ones (428–31). Régis follows suit. He adds a chapter on “the ad-
vantages we draw from observing the four precepts of analy sis” (Régis 1691, 
152–54) and abbreviates the lengthy Port- Royal discussion of synthesis into 
a single small chapter and just three brief rules: leave no term ambiguous; 
use clear and evident princi ples; and demonstrate all propositions (56). Part 
IV of Le  Grand’s Logick, “Concerning Method, or the Orderly Disposition 
of Th oughts,” deals with the analytic and synthetic methods, that is, resolu-
tion and composition. As part of the analytic method, Le  Grand asserts that 
this method is the art that guides reason in the search for truth;  because we 
cannot proceed to something unknown except by means of something 
known and questions are propositions that include something known and 
something unknown, whenever the nature or cause of anything is pro-
posed, we must

in the fi rst place accurately examine all the Conditions of the question pro-
pounded, without minding  things as are Extraneous, and do not belong to 
the Question. Secondly, We are to separate  those  things which are certain 
and manifest from  those that include any  thing of Confusion or Doubt . . .  
Th irdly,  Every Diffi  culty we meet with is to be divided into Parts . . .  Fourthly, 
We are orderly to dispose of our Perceptions, and the Judgments we frame 
thence; so that beginning from the most easie, we may proceed by degrees to 
 those that are more diffi  cult . . .  Fift hly, Th at the  Th ing in question, be fur-
nished with some Note or other that may determine it, and make us judge it 
to be the same, whenever we meet with it. (Le  Grand 1694, 1:46)

Th is seems to be Le  Grand’s version of Descartes’ four rules of method, 
restricted to what is useful to analy sis. Le  Grand ends his Logick with 
chapters on composition, giving vari ous rules of defi nition, axiom, and 
demonstration similar to the ones given by the Port- Royal Logic. As could 
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be expected, the seventeenth- century Cartesians construct accounts of 
Descartes’ method based on their understanding of Descartes’ assertions in 
the Discourse and Princi ples.

Th e Cartesians also integrate Descartes’ vari ous comments about the 
relation between mathe matics and physics into their accounts. Rohault 
discusses some of  these relations in the preface to his Treatise on Physics, 
beginning with a rebuke of scholastics for not teaching mathe matics in their 
schools: “Th e Fourth Defect that I observed in the Method of the [School] 
Phi los o phers, is the neglecting Mathematicks to that Degree, that the very 
fi rst Ele ments therof are not so much as taught in their Schools. And yet, 
which I very much won der at, in the Division which they make of a Body of 
Philosophy, they never fail to make Mathematicks one Part of it” (Rohault 
1729, n.p.; roughly 13–16). He then formulates the argument we have already 
seen in Du Roure about the use of mathe matics in general:

Now this Part of Philosophy is perhaps the most useful of all  others, at 
least it is capable of being apply’d more Ways than all  others: For besides 
that Mathematicks teach us a very  great number of truths which may be of 
 great Use to  those who know how to apply them: Th ey have this further very 
considerable advantage, that by exercising the Mind in a Multitude of Dem-
onstrations, they form it by Degrees and accustom it to discern Truth from 
Falsehood infi nitely better, than all the Precepts of Logick without Use can 
do. And thus  those who study Mathematicks fi nd themselves perpetually 
convinced by such Arguments as it is impossible to resist, and learn insensi-
bly to know Truth and to yield to Reason.

In large part, this is Rohault’s take on Descartes’ justifi cation for mathe-
matics outside the tree of philosophy: exercising the mind— crossword 
puzzles and all that. But Rohault goes a bit further, justifying the use of 
mathe matics in natu ral philosophy— indeed, in all arts— with two addi-
tional arguments:

First, that as  there is a natu ral Logick in all Men, so is  there also natu ral 
Mathematicks, which according as their Genius’s are disposed, make them 
more or less capable of Invention. Secondly, Th at if their Genius alone, con-
ducted only by natu ral Light,  will carry them so far, we cannot but hope 
Greater  Th ings from the same Genius if the study of Mathematicks be added 
to its natu ral Light, than if that study be neglected. And indeed all the prop-
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ositions in Mathematicks are only so many truths, which  those, who apply 
themselves to them, come to the Knowledge of by good Sense.

Th is off ers a positive role for mathe matics that does not refer expressly 
to Cartesian metaphysics. It demonstrates Rohault’s recognition (shared by 
Descartes) that mathe matics and physics rely on the same intellectual facul-
ties (Du Roure [1654, 188] expresses a similar sentiment). But it is not an ar-
gument to the eff ect that the method of physics is the same as the method of 
mathe matics or that mathematical truth or mathematical properties are the 
basis for physical truth or physical properties.

Rohault’s generally positive view is not refl ected in the work of his fol-
lower. Régis (1691) demarcates between mathe matics and physics, spe-
cifi cally asserting that he has avoided all mathematical questions in his 
philosophy:

 Th ose who read this book  will more easily experience its fl aws if they do not 
stop at equivocal words, ambiguous defi nitions, or any idea that is foreign to 
Philosophy, given that we have even purposely avoided Mathematical ques-
tions, both  because they are  little understood by the majority of  those who 
want to apply themselves to Philosophy, and  because we all too oft en con-
fuse them with purely Physical questions, though they are of an entirely dif-
fer ent nature. For one is not satisfi ed in Mathe matics by knowing that some 
 things have greater magnitude than some other things; we claim also to know 
with evidence the exact ratios holding between them, or precisely by how 
much they are greater, which does not at all concern Physics. (Régis 1691, 
preface)

Régis continues his demarcation between physics and mathe matics, accept-
ing the usefulness but denying the importance of mathe matics to physics, 
stressing the experiential basis of physics, in contrast with how geometry is 
usually practiced: “one can be a good Physicist without being a  great Geom-
eter, but one cannot be a  great Geometer without being a good Physicist, 
at least if we have Geometry consist (as we must) in demonstrations based 
upon facts, or on constant truths; for if we have it consist (as is usually done) 
in demonstrations based on arbitrary assumptions, nothing prevents a bad 
physicist from being a good geometer” (n.p.).

Unlike Rohault and Régis, who emphasize the empirical aspects of natu-
ral philosophy (see Ariew 2013; Dobre 2013), Le  Grand is interested in the 
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standard question of the certainty of natu ral philosophy (what he also calls 
physiology). He proceeds very much in the spirit of a scholastic, substitut-
ing Cartesian terminology and doctrines. He has considered the nature of 
God and inquired into his attributes: “Physiology comes next to be consid-
ered by us, which contemplates Natu ral  Th ings, and deduceth their  Causes 
from the fi rst Original . . .  Now that Physiology is a Species of Science, and is 
conversant with  things that are True and Necessary, appears from the Dem-
onstrations that are made of Natu ral  Th ings; the Certainty whereof depends 
on the Stability of  Th ings that are defi ned, and supposeth their determinate 
Essence” (Le  Grand 1694, 1:91).

Le  Grand then attempts to answer the objection: since bodies are only 
perceived by the senses and the senses may represent false  things to the un-
derstanding, how can the certainty required for science be had in natu ral 
 things? His answer is that “It is False that Material  Th ings are known by the 
Senses . . .  to speak properly, nothing is conveigh’d from  things without us, 
by the Organs of Sense, to our Minds, save only some Bodily motions, by 
which the Ideas of Objects are off er’d to them . . .  Wherefore, Bodily  things 
are not known by the Senses, but by the Understanding alone: So that to be 
sensible of a Material Substance, is nothing  else, but to have an Idea of it, 
which is not the work of the outward Senses, but of Cogitation” (Le  Grand 
1694, 1:92).

Th e further objection is that natu ral philosophy treats material  things 
as changeable, which seems inconsistent with the notion of science as cer-
tain and perpetual knowledge. Le  Grand’s answer is that “Nevertheless we 
must say, that Natu ral Philosophy is indeed a Science,  because the Nature of 
a Science is not consider’d with res pect to the  things it treats of, but accord-
ing to its Axioms of an undoubted Eternal Truth. For tho’ the  things which 
Physiology  handles, be changeable; yet the Judgments we make of them are 
stable and fi rm; and consequently the Truth we have of them is Eternal and 
unchangeable” (ibid.). Le  Grand (1694) gives as examples of  these indubita-
ble and constant truths propositions such as “all that is bodily is changeable” 
and “ every mixed body is dissoluble.” In this way, he rejoins  here Descartes’ 
view from in the end of Princi ples, Part II:

Forasmuch as  every Science hath a Subject, about which it is conversant, and 
to which, whatsoever is handled in the same may be attributed  either as 
Princi ples, Parts or Aff ections, we say that the Material Subjects of Physiology, 
are natu ral  things, and that Magnitudes, Figures, Situation, Motion, and Rest 
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are the Formal Subject of it; . . .  Wherefore, if a Natu ral Phi los o pher consid-
ers nothing in  matter besides  these Divisions, Figures and Motions, and ad-
mit nothing for Truth concerning them, which is not evidently deducible 
from common Notions, whose Truth is unquestionable, it is altogether man-
ifest, that no other Princi ples are to be looked for in Natu ral Philosophy, than 
in Geometry or abstract Mathematicks; and consequently that we may have 
as well Demonstrations of Natu ral  Th ings, as of Mathematical. (1:92)

Let us repeat the last thought: as long as we limit ourselves to what is deduc-
ible from common notions, we may have demonstrations of natu ral  things 
as well as  those of mathematical  things. Régis (1691) has an exemplary ex-
position of the same Cartesian view, delineating carefully among metaphys-
ics, mathe matics, and physics:

Metaphysics not only serves the soul to make itself known to itself, it is also 
necessary for it in order to know  things outside it, all natu ral sciences de-
pending on metaphysics: mathe matics, Physics, and Morals are founded on 
its princi ples. In fact, if Geometers are certain that the three  angles of a tri-
angle are equal to two right  angles, they received this certainty from Meta-
physics, which has taught them that every thing they conceive clearly is true 
and that it is so  because all their ideas must have an exemplary cause that 
contains formally all the properties  these ideas represent. If Physicists are 
certain that extended substance exists and that it is divided into several bod-
ies, they know this through Metaphysics, which teaches them not only that 
the idea they have of extension must have an exemplary cause, which can 
only be extension itself, but also that the diff  er ent sensations they have must 
have diverse effi  cient  causes that correspond to them and can only be the par-
tic u lar bodies that have resulted from the division of  matter. (64)24

Th e Cartesians found Descartes’ philosophy enormously impor tant for 
the seventeenth  century. Th e verso of Du Roure’s title page from his Philoso-
phy tells the story very well; while he appreciates Gassendi and Hobbes and 
quotes them at times, his admiration for Descartes knows no bounds: “One 
can oppose Hobbes, Gassendi, and Descartes against all  those whom are 
glorifi ed by Rome and Greece . . .   Th ose who would take the trou ble to read 
this philosophy  will fi nd numerous opinions of  these three wise phi los o-
phers, but principally  those of Descartes. Th is is why I want to show the 
extent he is esteemed by the following testimony.” Th e six subsequent 
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paragraphs are superlative praise for Descartes, including: “Descartes is 
the premier phi los o pher of all time.” When we tell the story of the seven-
teenth  century, we need to capture what  these thinkers found so appealing 
about Descartes (and what the anti- Cartesians found so dangerous). And 
when we do so, we fi nd also many diff  er ent views about the relations be-
tween mathe matics and natu ral philosophy: that natu ral philosophy can 
develop a method similar to that of mathe matics; that propositions in 
natu ral philosophy can be as certain as  those of mathe matics; that mathe-
matics can be of use in sharpening one’s mind for the practice of philosophy; 
that mathe matics has a mode of exposition that is particularly persuasive; 
that philosophy can be based on the same clear and distinct ideas as  those 
on which mathe matics are based. But we do not fi nd the view that the 
method of philosophy is reducible to the method of mathe matics or that 
philosophy is founded in mathe matics. Th e generally positive views of 
mathe matics in Descartes and the Cartesians do not legitimate a histori-
cal or historiographical thesis of the mathematization of nature in the 
fashion of Burtt, Dijksterhuis, and Koyré.

abbreviations

at Descartes, R. 1964–76. Oeuvres de Descartes

notes

 1. I take the language of the motivation for this volume from the orig-
inal prospectus of the workshop on which the volume is based.
 2. Th e work had a second edition in 1932. Burtt indicates that the 
second edition contains no changes in his narrative before Newton: “No 
historical researches during the last six years with which I have become ac-
quainted seem to require any essential changes in the survey  here embod-
ied, so far as it reaches” ([1924] 1954, preface).
 3. Mechanisering van het wereldbeeld, 1950; I  will be citing the En glish 
translation by Dikshoorn (Dijksterhuis 1969).
 4. Koyré studied with Husserl at Gottingen. As Sophie Roux (2010) 
states: “Husserl claimed that Galileo was the fi rst to mathematize nature, 
i.e., according to Husserl, to surreptitiously substitute mathematical ide-
alities for the concrete  things of the intuitively given surrounding world” 
(1n). For Koyré’s Bachelardian inspiration, see, for example, Iliff e (1995).
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 5. See also Koyré’s (1962, 11–12) reiteration of this view. Th e 1957 En-
glish version of that work and Koyré’s A Documentary History of the Prob lem 
of Fall from Kepler to Newton (1955) fi nd their way into the bibliography of 
Dijksterhuis’s 1961 En glish translation, but, obviously, not in the text itself.
 6. For Koyré, the second major change was the “dissolution of the cos-
mos,” with all that entails. An aside: To the extent that I think that the law 
of inertia was fi rst formulated by Descartes in his 1632 Le Monde, I do not 
think correct Koyré’s view that the mathematization of nature made the law 
of inertia pos si ble. But I  will not pursue this train of thought  here.
 7. Dijksterhuis also cites with approbation another opinion referring 
to Bacon as one of the “ great creative spirits of the seventeenth  century.” 
He then asserts that both “parties are right up to a point. Perhaps more the 
fi rst than the second: if Bacon with all his writings  were to be removed from 
history, not a single scientifi c result would be lost” (1969, 397).
 8. “Galileo and the scientifi c revolution of the seventeenth  century” 
and “Galileo and Plato” reprinted as chapters 1 and 2 of Koyré (1968), trans-
lated into French and reprinted in Koyré (1966). Dijksterhuis also knows 
Koyré’s “Galileo and Plato.”
 9. Iliff e refers to “obstacle” and “mutation” as Bachelardian concepts.
 10. From “An experiment in mea sure ment” of 1953. In this way Koyré 
positions himself against both Pierre Duhem’s internal continuous and 
Marxist external social accounts.
 11. Th e lit er a ture showing Koyré wrong about Galileo’s experiments is 
large and now fairly old; see the works of Stillman Drake et al. A more his-
torical appreciation of Francis Bacon’s scientifi c method and views on ex-
periments is perhaps as extensive, but more recent; see the essays of Dana 
Jalobeanu et al. and chapter 2 in this book.
 12. See also the excellent other suggestions about contextualizing the 
mathematization of nature in Roux (2010).
 13. I  will not go into the details of this answer. It should suffi  ce to refer 
to Descartes on the creation of the eternal truths and the fact that, for Des-
cartes, metaphysical truths are more certain than mathematical truths.
 14. Dijksterhuis actually knows that the Rules was not published  until 
1701 in the Opera Posthuma.
 15. A word about Mathesis Universalis: It has been pointed out (Weber 
1964) that Rule 4 has two dissonant parts, the second of which contains 
Descartes’ views on Mathesis Universalis. While some able commentators 
(Marion 1975, for example) have argued that one can provide a reading of 
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Rule 4 that takes both parts into account,  others have argued that Mathesis 
Universalis is  either a  later or an earlier version of Rule 4 or even that it does 
not belong at all in the manuscript. I think that  these issues can be settled in 
 favor of Mathesis Universalis being a  later interpolation and I am confi rmed 
in this by the fact that the recently discovered Cambridge manuscript of the 
Rules is missing part 2 of Rule 4, containing Mathesis Universalis. See the 
edition of the Rules by Serjeantson and Edwards (forthcoming). Th us, for 
Descartes, Mathesis Universalis is not the “guiding princi ple for his  whole 
life- work,” and mathe matics was not “the sole key needed to unlock the se-
crets of nature.”
 16. Th e last few assertions diff er from the fi rst few in that they reveal 
something like a metaphysical thesis about the relations between mathe-
matics and physics, as opposed to an epistemological or methodological 
one.  Th ere is, of course, also the notion of geometric order (more geometrico) 
in Descartes’ appendix to Second Replies. But as Descartes makes clear, this 
is not a method, but a mode of exposition not applying solely to narratives 
proceeding by axioms, postulates, and theorems. For a development of 
this view in a Cartesian, see Lodewijk Meyer’s preface to Spinoza’s Descartes’ 
Princi ples of Philosophy. Th e issue is complex, exemplars of it span such di-
verse thinkers as Jean- Baptiste Morin’s Quod Deus sit and Nicolaus Steno’s 
Elementorum myologiae specimen seu Musculi description geometrica.
 17. Th e French version is almost the same: “I do not accept any princi ples 
in physics that are not also accepted in mathe matics, so that I may prove by 
demonstration every thing I would deduce from them;  these princi ples are 
suffi  cient, inasmuch as all natu ral phenomena can be explained by means of 
them” (AT, 9:101).
 18. By Book 3 of the Princi ples, Descartes  will be invoking hypotheses or 
supposition that he knows cannot be reduced to the princi ples of Part I or 
their deductions in Part II; as he asserts: “I dare say that you would fi nd at 
least some logical connection and coherence in it, such that every thing con-
tained in the last two parts [that is, Princi ples 3 and 4] would have to be re-
jected and taken only as a pure hypothesis or even as a fable, or  else it all has 
to be accepted. And even if it  were taken only as a hypothesis, as I have 
proposed, nevertheless it seems to me that,  until another is found more ca-
pable of explaining all the phenomena of nature, it should not be rejected” 
(AT, 4:216–17). See Ariew (2010, 31–46).
 19. Let me put the same point somewhat diff erently. Descartes is no at-
omist, but supposing he was, he would refer all natu ral phenomena to his 
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two fundamental princi ples, atoms and the void. Th e properties of bodies 
then would be “what the geometers call quantity,” namely, size, shape, and 
motion.
 20. For an account of the peculiarities of the Cartesian metaphysics of 
Desgabets and Régis, see Schmaltz (2002).
 21. A con temporary description of the work, from a letter by Simon 
Foucher to Leibniz, confi rms this impression of eclecticism: “You know that 
I think Regis has given the public a  great system of philosophy in 3 quarto 
volumes with several fi gures. Th is work contains many very impor tant 
treatises, such as the one on percussion by Mariotte, chemistry by l’Emeri, 
medicine by Vieuxsang and by d’Uvernai. He even speaks of my treatise on 
Hygrometers, although he does not name it.  Th ere is in it a good portion of 
the physics of Rohault and he refutes  there Malbranche, Perraut, Varignon— 
the fi rst concerning ideas, the second concerning weight, and the third, who 
has recently been received by the Académie Royale des Sciences, also con-
cerning weight. Th e Metheores of l’Ami also in part adorn this work, and the 
remainder is from Descartes. Regis conducted himself rather skillfully in 
his system, especially in his ethics” (Leibniz 1890, 1:398–400).
 22. In the prelude to his tree of Philosophy, Descartes asserts: “a man 
who as yet has merely the common and imperfect knowledge . . .  should 
above all try to form for himself a code of morals suffi  cient to regulate the 
actions of his life. . . .   Aft er that he should likewise study . . .  the logic that 
teaches us how best to direct our reason in order to discover  those truths of 
which we are ignorant. And since this is very dependent on custom, it is 
good for him to practice the rules for a long time on easy and  simple ques-
tions such as  those of mathe matics. Th en, when he has acquired a certain 
skill in discovering the truth in  these questions, he should begin seriously 
to apply himself to the true philosophy” (AT, 10b:13–14). Th is is, of course, 
related to the statement in the Discourse cited earlier that “the real use that 
can be made of mathe matics is . . .  to prepare the mind to follow the real 
philosophical method.”
 23.  Th ere are numerous methods called analy sis and synthesis in early 
modern philosophy, most of which have nothing to do with the vari ous 
 things Descartes called analy sis and synthesis: resolution and composition 
within the method of the Rules, the two modes of demonstration of the Sec-
ond Replies, or the analy sis (and synthesis) of the ancients. Th e notion 
originates at least from Aristotle’s Posterior Analytics and is found in 
seventeenth- century scholastic textbooks in the portion of their Logic 
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texts dealing with scientifi c method. Du Roure’s analy sis and synthesis fol-
low the same lines as scholastic authors such as Scipion Dupleix: “Method 
is the order of the sciences and of their discourse: where one makes several 
 things out of one, which is called the analytic method, or from several one, 
which is called the synthetic or compositional method” (Du Roure 1665, 
section 2). For more on Scholastic and Cartesian Logic, see Ariew (2014).
 24. Régis continues: “Metaphysics not only serves as foundation for all 
natu ral Sciences, it is yet simpler and easier to acquire than all of them; the 
mind’s access to this science is common to all kinds of native intelligences, 
 because  there is nothing in life or in the society of men which does not dis-
pose or lead itself to it.  Every occasion all needs contribute incessantly to 
the material of Metaphysics which concerns the knowledge of the soul and 
we experience in ourselves all the proofs of the  things that are the object of 
this knowledge. In contrast, with the other sciences we are required to go 
out from ourselves in order to consider the objects we examine. For exam-
ple, we go out from ourselves in Geometry in order to contemplate shapes, 
we go out from ourselves in Physics to consider motions, and we go out 
from ourselves in Morals in order to observe the conduct of other men.”
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Nature came to be understood through mathe matics in the 
seventeenth  century, when Galileo (1890) famously wrote: “Philosophy is 
written in this  grand book, the universe, which stands continually open 
to our gaze. But the book cannot be understood  unless one fi rst learns to 
comprehend the language and read the letters in which it is composed. It 
is written in the language of mathe matics, and its characters are triangles, 
circles, and other geometric fi gures without which it is humanly impossible 
to understand a single word of it; without  these, one wanders about in a dark 
labyrinth” (6:232; Galilei 1957, 237–38). Th is, in a way, can be understood as 
a motto for the  century as a  whole, or, at least, for  those fi gures in the 
 century who are now recognized as the ancestors of modern science. But it 
is also the  century in which the laws of motion as we know them are fi rst 
articulated.  People before the seventeenth  century had certainly talked 
about nature as being governed by overarching laws. But even so, it is only 
in this  century that specifi c laws  were proposed, and their consequences 
explored.1

It is quite natu ral to see  these two trends as being closely linked. In con-
temporary physics,  aft er all, mathematically expressed laws of nature such 
as quantum theory or general relativity are at the heart of mathematical 
physics, which would be unimaginable without such structures. One might 
imagine that this close link between mathe matics and laws goes back to the 
origin of both in early modern natu ral philosophy. But, I  shall argue, how-
ever plausible such an assumption might be, the story is more complicated 
than that. Th ough both the mathematization of nature and the idea of a law 
of nature are impor tant to the early modern vision of the physical world, 

5

laws of nature and the mathe matics 
of motion

da n iel ga r ber
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they are to a large extent distinct. In making my case, I would like to explore 
three key fi gures from the period: Descartes, Galileo, and Hobbes. In Des-
cartes we certainly have laws of nature:  these are central to the proj ect of his 
physics, both in the early Le monde and in the  later Principia philosophiae. 
But, I  shall argue, despite what Descartes sometimes says, mathe matics is 
only marginal to his program. In Galileo, on the other hand, mathe matics 
is central: his application of mathe matics to motion was one of the  great ac-
complishments of early modern science. But even so, I would argue, Galileo 
made no substantive use of anything that could properly be called a law of 
nature. And fi  nally, with Hobbes we have something of an ambiguous situ-
ation. For Hobbes, the subject  matter of geometry is body, including its mo-
tion, and so  there is a sense in which the kind of general statements about 
motion that Descartes identifi es as laws are a part of mathe matics, but a 
mathe matics that is very diff  er ent from what anyone  else in the period rec-
ognized as such. And while Hobbes off ered a number of impor tant general 
statements about bodies in motion, he was very careful not to call them laws.

descartes and laws of nature

Descartes may not have in ven ted the idea of a law of nature, the idea that 
nature is structured in accordance with some general laws that order  things 
in the world. But he may well be the fi rst who actually tried to articulate the 
laws of nature in such a way that their consequences for how nature works 
can be set out and evaluated.2

For Descartes, of course, body consists only of extension. As a conse-
quence, every thing in nature must be explicable in terms of the size, shape, 
and motion of bodies and the smaller parts that make them up. What he 
calls the rules or laws of nature govern the motion of bodies, one of its 
modes.  Th ese laws of nature are fi rst given in chapter 7 of his early Le monde, 
which Descartes suppressed  aft er fi nding out about the condemnation of 
Galileo in 1633. But they appear  later in his Principia philosophiae, suitably 
rethought and reor ga nized. It is in this form that they  were best known by 
his contemporaries.

Th e laws as given in the Principia are as follows:

[Law 1] Each and  every  thing, in so far as it can, always continues in the 
same state; and thus what is once in motion always continues to move. 
(PP 2.37)3
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[Law 2] All motion is in itself rectilinear; and hence any body moving 
in a circle always tends to move away from the center of the circle which it 
describes (PP 2.39).

[Law 3] If a body collides with another body that is stronger than itself, 
it loses none of its motion; but if it collides with a weaker body, it loses a 
quantity of motion equal to that which it imparts to the other body (PP 2.40).

Preceding the statement of  these laws in the Principia, Descartes proposes a 
princi ple in accordance with which the total quantity of motion in the world 
must remain constant:

In the beginning [God] created  matter, along with its motion and rest; and 
now, merely by his regular concurrence, he preserves the same amount of 
motion and rest in the material universe as he put  there in the beginning . . .  
For we understand that God’s perfection involves not only his being immu-
table in himself, but also his operating in a manner that is always utterly 
constant and immutable. Now  there are some changes whose occurrence is 
guaranteed  either by our own plain experience or by divine revelation, and 
 either our perception or our faith shows us that  these take place without any 
change in the creator; but apart from  these we should not suppose that any 
other changes occur in God’s works, in case this suggests some inconstancy in 
God. Th us, God imparted vari ous motions to the parts of  matter when he fi rst 
created them, and he now preserves all this  matter in the same way, and by the 
same pro cess by which he originally created it; and it follows from what we 
have said that this fact alone makes it most reasonable to think that God like-
wise always preserves the same quantity of motion in  matter (PP 2.36).

Th ough this princi ple is not called a law, it is an impor tant constraint on the 
be hav ior of bodies in motion. Following the statement of the third law, Des-
cartes works out a series of examples in which he shows the outcome of di-
rect collisions for two bodies with diff  er ent sizes and speeds (PP 2.45ff ).4 Th e 
conservation princi ple is a key tool that Descartes uses in deriving  those 
supposed consequences of the third law: Descartes treats collisions in such 
a way that the total quantity of motion in the system of colliding bodies re-
mains the same before and  aft er the collision. From  those examples, it is 
clear that the quantity of motion is mea sured jointly by the size and the 
speed of the bodies. Size rather than mass, since Descartes does not have a 
conception of quantity of  matter distinct from size, and speed rather than 
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velocity, since directionality is treated distinctly from the magnitude of the 
speed, and the conservation princi ple does not govern it.5

Th e argument for the conservation of quantity of motion is grounded 
in a theological doctrine that dates from long before Descartes’ time, the 
view that God must sustain the world from moment to moment for it to 
continue to exist. Descartes’ claim is that  because God is immutable, and 
acts in a constant way, the total quantity of motion must remain constant 
in the world. Th is same divine immutability is also what he claims grounds 
the three explic itly named laws of nature.  Aft er the second law he notes that 
“the reason for this second rule is the same as the reason for the fi rst rule, 
namely the immutability and simplicity of the operation by which God 
preserves motion in  matter. For he always preserves the motion in the pre-
cise form in which it is occurring at the very moment when he preserves it, 
without taking any account of the motion which was occurring a  little while 
earlier” (PP 2.39). And similarly for the third law, which follows from the 
fact that “since God preserves the world by the selfsame action and in ac-
cordance with the selfsame laws as when he created it, the motion which he 
preserves is not something permanently fi xed in given pieces of  matter, but 
something which is mutually transferred when collisions occur” (PP 2.42). 
Th e laws of nature are thus grounded in divine immutability and the fact 
that the created world depends from moment to moment on the power by 
which he keeps the world in existence.

In what sense are Descartes’ laws of nature intended to be laws of na-
ture? First of all, one can point to their generality: they are true not merely 
of this or that group of bodies, but of all bodies, of bodies as such. In this 
way their scope is over nature as a  whole. In both Le monde and in the  later 
Principia philosophiae, the general laws are taken to apply to the cosmos as 
a  whole, and are appealed to in a broad and hand- waving way to explain the 
general features of the cosmos as a  whole, such as the fact that  there are in-
fi nite suns, each of which is a source of light.6 Now, in Le monde Descartes 
refers to them as “the laws God imposed on it [i.e., nature]” (AT 11 36). Th is 
suggests that the laws are chosen by God and then “imposed” on bodies. But 
this is clearly not exactly what is  going on, even in Le monde, which, as in 
the Principia philosophiae, grounds the laws in the constant and continuous 
activity of God on bodies in sustaining them in existence. God does not im-
pose them on bodies in the way in which a monarch might formulate laws 
and then impose them on the citizenry. But  there is another sense in which 
the laws might be said to be “imposed” on bodies. For Descartes bodies are 
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essentially extended. As I understand that, it means bodies contain only 
their geometrical properties: they are the objects of geometry, made real, 
made concrete. But as such, considered as the objects of geometry,  there is 
nothing in them that determines that they must obey the rules that Des-
cartes calls the laws of nature. Taken by themselves, they are completely 
indiff erent to motion of any kind. However, when they are realized in 
nature, as real, existent  things, they must behave in a certain way  because 
of the way in which an immutable God sustains them. What Descartes calls 
the laws of nature are  really just a way of formulating how it is that God keeps 
them in existence. But insofar as  these laws do not follow from the nature of 
body as such, and insofar as they require God’s intervention, we might say 
that they are, indeed “imposed” on body by God. Th is can be so even though 
Descartes claims that “if God had created many worlds, they [i.e., the laws] 
would be as true in  those worlds as they are in this one” (AT 11 47). To that 
extent, one might want to say that the laws of nature are, in a sense, neces-
sary for Descartes. But if they are necessary it is not  because of any neces-
sity in body, or any necessity in the laws themselves, but only  because God 
exists necessarily, and is necessarily immutable, so necessarily  will act im-
mutably in any pos si ble world he creates. In this way the laws of nature per-
tain not to the essence of body but to its continued existence, insofar as the 
continued existence derives directly from God.

It is in ter est ing to note  here that as Descartes understands them, the laws 
of nature by themselves do not entail that bodies are heavy, that is, that they 
tend to fall  toward the center of the earth. Cartesian bodies, as I earlier 
noted, are completely indiff erent to motion, including gravitational motion. 
For Descartes, bodies tend to fall to the center of the earth only  because of 
the par tic u lar confi guration of the vortex of subtle  matter that surrounds the 
earth and the make-up of the gross bodies of our experience.7

Descartes sometimes talks as if his entire physics  were just a kind of 
mathe matics. For example, writing to Mersenne on March 11, 1640, Des-
cartes remarked: “I would think I knew nothing in physics if I could say 
only how  things could be, without demonstrating that they could not be 
other wise. Th is is perfectly pos si ble once one has reduced physics to the 
laws of mathe matics. I think I can do it for the small area to which my 
knowledge extends” (AT 3 39). And at the end of Part II of the Principia phi-
losophiae, he wrote: “Th e only princi ples which I accept, or require, in physics 
are  those of geometry and pure mathe matics;  these princi ples explain all 
natu ral phenomena, and enable us to provide quite certain demonstrations 
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regarding them” (PP 2.64).8 And, indeed, much of Descartes’ writings about 
nature do involve serious attempts at applying mathe matics to the physical 
world. Famously, the young Descartes and the young Isaac Beeckman 
attempted to make physics mathematical, in some sense or another. In a 
famous passage in his journals, which bears the marginal note “Physico- 
mathematici paucissimi,” Beeckman wrote, with pride, that the young 
Descartes had told him that “he had never found a man, beside me [i.e., 
Beeckman] who . . .  had accurately joined physics with mathe matics in this 
way” (AT 10 52). So inspired, Descartes’ early work bristles with vari ous 
attempts to combine physics and mathe matics, including attempts to treat 
the prob lem of  free fall that Galileo would solve in mathematical terms.9 
 Later, of course, Descartes  will use mathe matics essentially in his deriva-
tion of the law of refraction in optics, in a famous argument he  will give in 
discourse 2 of the Dioptrique. Sophisticated mathematical arguments  will 
also play a central role in Descartes’ account of the rainbow in discourse 8 
of the Météores. In his correspondence in the late 1630s,  there are attempts 
to apply very serious mathe matics to a number of prob lems in the motion of 
bodies (on this, see Garber 2000).

But for all of that, and despite the statements in which he claims that all 
his natu ral philosophy is mathe matics,  there is no serious mathe matics at 
all  either in Le monde, or in the  later Principia philosophiae, the canonical 
pre sen ta tion of his natu ral philosophy. As he notes in discussing his thought 
with Frans Burman in 1648, “You do not . . .  need mathe matics in order to 
understand the author’s philosophical writings [e.g., his physics], with the 
pos si ble exception of a few mathematical points in the Dioptrique” (AT 5 
177). Th is is largely true of his laws of nature. Th e laws themselves are given 
in purely qualitative terms in the text. It is true that a bit of arithmetic en-
ters into the example he works out of the application of the third law, the 
law of collision to the case of direct collision, as mentioned earlier.  Th ere 
he works out some solutions to the prob lem of direct collision by applying 
the princi ple of the conservation of quantity of motion to the vari ous com-
binations of size and speed of two colliding bodies. But the mathe matics is 
trivial in comparison with other attempts to join physics and mathe matics 
in Descartes’ corpus and hardly counts as serious “physico- mathe matics.”

And their application  later in the Principia philosophiae is qualitative 
as well. For example, in PP 3.59, Descartes addresses the question as to force 
(vis) associated with the striving (conatus) that a body, rotating, has to escape 
along the tangent of a circle in which it is rotating, a striving derived from 
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his second law. To treat this striving, he 
imagines a hollow tube, EY, fi xed at E and 
rotating, with a ball A in the tube (see 
Figure 1). He writes: “When we fi rst begin 
to rotate this tube around the center 
E,  the globe  will advance only slowly 
 toward Y. But in the next instant it  will ad-
vance a bit faster,  because in addition to 
retaining its original force, it  will acquire 
new force from its new striving to recede 
from E:  because this striving continues as 
long as the circular motion lasts and is, as it 

 were, renewed constantly” (PP 3.59).10 It is in ter est ing  here— and in radical 
contrast with a similar analy sis in Galileo, as we  shall see— that Descartes 
nowhere ever attempts to represent the motion of A or its acceleration in 
mathematical terms.

galileo and the sintoni of motion

While mathe matics enters into Descartes’ natu ral philosophy from time to 
time, his treatment of the laws of motion seems to be quite in de pen dent of 
any attempts that he may have made to understand nature mathematically. 
With Galileo, on the other hand, the application of mathe matics to nature 
is quite central to his proj ect. However, it is not clear that the laws of nature 
play any substantive role in his account of the physical world. Now,  there is 
no doubt that in some sense Galileo did recognize the idea of the laws of 
nature. In his impor tant “Letter to the  Grand Duchess Christina,” in which 
he discusses Copernicanism and the Bible, he wrote: “Nature . . .  is inexora-
ble and immutable; she never transgresses the laws [leggi] imposed upon 
her, or cares a whit  whether her abstruse reasons and methods of operation 
or understandable to men” (EN 5 316).11 But even though in a very general 
sense he may have recognized the importance of laws of nature, I  will argue 
that his own mathematical science of motion would seem to involve noth-
ing that one can call a general law of nature.

Galileo worried about the be hav ior of bodies in motion for virtually his 
entire  career, from the time that he was a young professor  until his last years 
 under  house arrest. It would not be appropriate in this modest essay to try 
to survey Galileo’s thought throughout his long  career. Instead, I would like 

Figure 1. From Descartes, Principia 
philosophiae (Amsterdam: Elzevir, 
1644), 101.
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to begin by looking at the treatment of bodies in motion in his last work, the 
Discorsi e dimostrazioni matematiche, intorno à due nuove scienze (Two New 
Sciences).12

Th e second of the two new sciences treated in the book is the science of 
motion. Th is is introduced at the beginning of the Th ird Day of the dialogue, 
in which the interlocutors gather to read and discuss a Latin treatise by 
“the Academician,” Galileo, of course. Th e treatise is most likely the result 
of work on motion done during the fi rst de cade of the seventeenth  century, 
before Galileo got sidetracked by the astronomical proj ect of the Starry 
Messenger. It begins as follows: “We bring forward a brand new science con-
cerning a very old subject.  Th ere is perhaps nothing in nature older than 
MOTION, about which volumes neither few nor small have been written by 
phi los o phers; yet I fi nd many essentials of it that are worth knowing which 
have not even been remarked, let alone demonstrated” (EN 8 190). Th is, 
then, is the subject  matter of the new science: motion, treated in the Th ird 
and Fourth days of the dialogue.

In the Th ird Day, Galileo begins with a treatment of uniform motion. 
But the centerpiece is the treatment of naturally accelerated motion. For 
most readers the featured result is oft en referred to as the “law of  free fall”:

Proposition II. Th eorem II
If a moveable descends from rest in uniformly accelerated motion, the 

spaces run through in any times what ever are to each other as the duplicate 
ratio of their times; that is, are as the squares of  those times. (EN 8 209)

According to this theorem, the distance fallen by a body in  free fall is propor-
tional to the square of the time. Also impor tant is the so- called odd- number 
rule, a corollary to this theorem, in accordance with which the distances 
fallen in equal successive times are proportional to the sequence of odd num-
bers (210).

Interestingly, though, Galileo’s own pre sen ta tion is somewhat diff  er ent 
and not focused on the times- square rule. He begins with a question as to 
what the proper defi nition of accelerated motion is. Th e defi nition that he 
proposes is the following: “I say that motion is equably or uniformly accel-
erated which, abandoning rest, adds on to itself equal momenta of swift ness 
in equal times” (198, 205). But, Galileo won ders, is this defi nition the cor-
rect defi nition for falling bodies as they actually accelerate in nature? He 
writes: “And fi rst, it is appropriate to seek out and clarify the defi nition that 
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best agrees with that which nature employs. Not that  there is anything 
wrong with inventing at plea sure some kind of motion and theorizing about 
its consequent properties . . .  But since nature does employ a certain kind of 
acceleration for descending heavy  things, we deci ded to look into their prop-
erties so that we might be sure that the defi nition of accelerated motion 
which we are about to adduce agrees with the essence of naturally acceler-
ated motion” (197). Th is, then, is the question that he investigates.

Th e theorem generally called the law of  free fall is presented as a direct 
mathematical consequence of that defi nition.13 Galileo then goes to nature, 
and sees if falling bodies actually satisfy that consequence, that is, he goes 
to nature to see if the distance fallen is proportional to the square of the 
time. (Actually, it is somewhat more complicated than that. Galileo does not 
have the means to mea sure that directly, so he has to slow  free fall down by 
rolling balls down inclined planes, so that he can actually mea sure the time 
and compare it with the distance fallen. But he needs to establish that the 
relation between time and distance fallen in  free fall  will be the same for a 
ball rolling down an inclined plane.) Galileo describes in some detail the 
experiments that he performed: “In a wooden beam or raft er about twelve 
braccia long, half a braccio wide, and three inches thick, a channel was rab-
beted in along the narrowest dimension” (212). Balls  were rolled down in the 
channel, and the relation between distance and time noted. Galileo even felt 
the need to inform the reader about how exactly the time was mea sured by 
way of a  water clock. His conclusion is that the balls do, indeed, observe that 
ratio between distance and time that Galileo’s defi nition of acceleration re-
quires (212–13). His conclusion is that the defi nition of acceleration that be-
gins the discussion—“this fi rst and chief foundation upon which rests an 
im mense framework of infi nitely many conclusions”—is, indeed, the kind 
of acceleration that is at issue in naturally falling bodies.

Th e way in which Galileo derives the mathematical account of  free fall 
from the defi nition of acceleration shows an in ter est ing contrast with Des-
cartes. Descartes’ account of the acceleration of the ball in the rotating tube, 
discussed earlier, is entirely qualitative:  there is no mathematical reasoning 
and no mathematical treatment of accelerated motion. Galileo, on the other 
hand, starts with the idea that in accelerated motion, equal momenta of 
speed are added in equal times, similar to Descartes’ starting place. But he 
then represents the relation between time and distance fallen in geometri-
cal terms, and then uses geometrical reasoning to derive an exact geometri-
cal expression of the relation between time and distance.
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In the remaining pages of the Th ird Day of the dialogue, Galileo goes on 
to draw further consequences from the defi nition of natu ral acceleration 
that he establishes early in the dialogue.14 Among the consequences that 
Galileo noted was one that we may consider of special interest. In the  middle 
of a scholium to Proposition XXIII Prob lem IX, Galileo makes the follow-
ing observation: “It may also be noted that what ever degree of speed is found 
in the moveable, this is by its nature indelibly impressed on it when external 
 causes of acceleration or retardation are removed, which occurs only on the 
horizontal plane: for on declining planes  there is cause of more acceleration, 
and on rising planes, of retardation. From this it likewise follows that mo-
tion in the horizontal is also eternal, since if it is indeed equable it is not 
weakened or remitted, much less removed” (243). Th is looks very much like 
Descartes’ fi rst and second laws of nature from the Principia philosophiae, 
the so- called (but incorrectly named) princi ple of inertia.15 But  there are dif-
ferences. It is impor tant to note  here that what Galileo is talking about is 
not rectilinear motion but horizontal motion: motion on a plane all of whose 
points remain equidistant from some point  toward which the heavy body is 
attracted. Th at is to say, what persists is circular motion around the point to 
which a heavy body tends to fall. And it is impor tant to note that we are 
dealing with motion on a plane: if the plane  were eliminated, the body would 
simply continue to fall  toward the center of attraction. And fi  nally, it should be 
noted that as salient as this observation is to us, in the context of the Th ird 
Day of the Discorsi, Galileo pres ents this simply as an observation in pass-
ing in the course of a scholium. In the context of the Th ird Day, it does not 
even get separate designation as a theorem or proposition. Th ough we may 
consider it of special interest, in the context of the Th ird Day, Galileo felt 
other wise.

But this observation has a special role to play in the central proposition 
of the Fourth Day. Th e very fi rst proposition of the Fourth Day is Galileo’s 
account of projectile motion: “When a projectile is carried in motion com-
pounded from equable horizontal and from naturally accelerated downward 
[motion], it describes a semiparabolic line in its movement” (EN 8 269). Th is 
proposition is proved quite simply by putting together the uniform motion 
of a body on a horizontal plane with the accelerated motion of a body in  free 
fall: when you combine the two, it follows straightforwardly that the projec-
tile describes a semiparabola.

In this way, Galileo’s new theory of motion is able to give very sophis-
ticated mathematical descriptions of the motion of bodies in vari ous 
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impor tant circumstances, in  free fall, on a horizontal plane, and in projec-
tile motion. But are  these laws of nature? I think not. But why not? Funda-
mentally it is a question of scope.

Th e facts about motion that we have been examining depend strongly on 
the assumption that we are dealing with heavy bodies, bodies that have a 
tendency to fall  toward a par tic u lar point. In the Discorsi, that point is, of 
course, the center of the earth. In his earlier book, the Dialogo sopra i due 
massimi sistemi del mondo (Dialogue Concerning the Two Chief World Sys-
tems), Galileo attempts to generalize this. In the First Day of that dialogue 
he attempts to articulate an alternative to the Aristotelian cosmology that 
takes the center of the earth as the center of the universe. In that context he 
writes: “ Every body constituted in a state of rest but naturally capable of mo-
tion  will move when set at liberty only if it has a natu ral tendency  toward 
some par tic u lar place; for if it  were indiff erent to all places it would remain 
at rest, having no more cause to move one way than another. Having such a 
tendency, it naturally follows that in its motion it  will be continually accel-
erating” (EN 7 44).16 It is evident that the center of the earth is such a par tic-
u lar place for bodies on the earth: “the parts of the earth do not move so as 
to go  toward the center of the universe, but so as to unite with the  whole 
earth (and that consequently they have a natu ral tendency  toward the cen-
ter of the terrestrial globe, by which tendency they cooperate to form and 
preserve it)” (57–58; TCWS 33). But it is not at all clear how to generalize this 
to other bodies outside of the earth. In the TCWS, Galileo does off er his fa-
mous Platonic hypothesis about the formation of the planetary system:

Let us suppose that among the decrees of the divine Architect was the 
thought of creating in the universe  those globes which we behold continu-
ally revolving, and of establishing a center of their rotations in which the sun 
was located immovably. Next, suppose all the said globes to have been cre-
ated in the same place, and  there assigned tendencies of motion, descending 
 toward the center  until they had acquired  those degrees of velocity which 
originally seemed good to the Divine mind.  Th ese velocities being acquired, 
we lastly suppose that the globes  were set in rotation, each retaining in its 
orbit its predetermined velocity. (EN 7 53; TCWS 29)

Galileo claims that if we assume such a hypothesis, we can fi nd a single place 
from which, should each of the planets be  imagined to fall  toward the sun 
and their fi nal speed converted into rotational motion, we would get a sys-
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tem that agrees very closely with the observed speeds of the  actual planets. 
In this way Galileo hypothesizes the sun as a center of tendency for plan-
ets, and in this way, in princi ple, extends his account of motion to the 
planets with res pect to the sun. But this is far from a systematic generaliza-
tion of the accounts of  free fall, the per sis tence of horizontal motion, and 
the be hav ior of projectiles, which remain par tic u lar claims about heavy 
bodies near the surface of the earth. What would happen if a piece of Earth 
 were released ten feet over the surface of Mars, or a Martian rock ten feet 
over the surface of Earth? What happens to bodies in interplanetary space, 
or beyond the orbit of the last planet?

Lacking an obvious general applicability outside of a fairly narrow con-
text, it is diffi  cult to see how Galileo’s accounts of motion could play any-
thing like the role in organ izing the Galilean world that Descartes’ laws of 
nature play in his, where they are used to explain the structure of the  whole 
universe. In writing to Mersenne about his impressions of Galileo’s Discorsi, 
Descartes (1638) noted the following:

Generally speaking, I fi nd that he philosophizes much more ably than is 
usual, in that, so far as he can, he abandons the errors of the Schools and tries 
to use mathematical methods in the investigation of physical questions. On 
that score, I am completely at one with him, for I hold that  there is no other 
way to discover the truth. But he continually digresses, and he does not take 
time to explain  matters fully. Th is, in my view, is a  mistake: it shows that he 
has not investigated  matters in an orderly way, and has merely sought expla-
nations for some par tic u lar eff ects, without  going into the primary  causes in 
nature; hence his building lacks a foundation. (Descartes to Mersenne, 11 
Oct. 1638, AT 2 380)

It seems true to say that “his building lacks a foundation”: the generaliza-
tions that Galileo pres ents explain  things on Earth, but they fail to treat 
nature as a  whole. For that he would need to articulate general laws that 
unite the terrestrial and cosmological domains.

Now, this may not be entirely fair to Galileo: it is not clear to me that he 
wanted to do the kind of  thing that Descartes was  doing, and may have been 
quite happy to work piecemeal, one prob lem at a time. In a letter Galileo 
wrote to Belisario Vinta in 1610, describing the proj ect that would become 
Days Th ree and Four of the Discorsi, he projected “three books on local 
motion—an entirely new science in which no one  else, ancient or modern, 
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has discovered any of the most remarkable characteristics [sintomi] which 
I demonstrate to exist in both natu ral and violent movement (EN 10 351–
52).17 Similarly, in a letter from January 1639, shortly  aft er the publication 
of the Discorsi in 1638, Galileo describes the proj ect in similar terms: 
“I’m interested in examining what might be the characteristics [sintomi] 
which accompany the motion of a moving body, which, starting from a 
state of rest, it goes on moving with a speed that constantly increases in the 
same way” (EN 18 12).18As we saw earlier in the “Letter to the  Grand Duch-
ess Christina,” Galileo has the concept of an overarching law of nature, 
something that governs real ity as a  whole. But his mathematical account of 
the motion of bodies is not conceived in  those terms: his aim is just to give 
some of the most in ter est ing “sintomi” of accelerated motion. What we 
have in Galileo, in essence, is a thoroughly mathematical account of at 
least some aspects of the motion of bodies, but without laws of nature.

hobbes and the geometry of motion

Motion plays a central role in Hobbes’s natu ral philosophy: it is the sole de-
terminant of change in his materialistic world of body. And mathe matics is 
central as well. Hobbes, like Galileo before him, was interested in a mathe-
matical account of motion. In fact, for Hobbes, motion is an integral ele ment 
of his geometry. However, while Hobbes put forward a number of general 
statements about bodies in motion, his relation to the tradition of laws of 
motion is not entirely clear.

Hobbes was a  great admirer of Galileo, particularly in regard to his 
treatment of motion. In the 1660 dialogue, Examinatio et Emendatio Math-
ematicae Hodiernae, Hobbes wrote: “the doctrine of motion is known to very 
few, notwithstanding the fact that the  whole of nature, not merely that 
which is studied in physics, but also in mathe matics, proceeds by motion. 
Galileo was the fi rst who wrote anything on motion that was worth read-
ing” (Hobbes 1660 quoted in Jesseph 2004). In De corpore (Hobbes 1655) 
his praise was even stronger, advancing Galileo as the founder of natu ral 
philosophy: “ Aft er him [i.e., Copernicus] the Doctrine of the Motion of the 
Earth being now received, and a diffi  cult Question thereupon arising con-
cerning the Descent of Heavy Bodies, Galileus in our time striving with 
that diffi  culty, was the fi rst that opened to us the gates of Natu ral Philoso-
phy Universal, which is the knowledge of the Nature of Motion. So that nei-
ther can the Age of Natu ral Philosophy be reckoned higher than to him” 
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(DC, Epistle Dedicatory, n.p.).19 But despite his high praise for Galileo, his 
own treatment of motion was radically diff  er ent from that of his hero, and 
much closer to that of Descartes, whose philosophy he generally rejected.

While  there are a number of treatments of motion in Hobbes’s writings, 
I  will concentrate on what is arguably the canonical treatment in his De cor-
pore of 1655, the treatise on body that begins his Elementa philosophiae, the 
three- part philosophical proj ect that begins with a physics, is followed by an 
account of the  human being (De homine 1658), and is completed by a poli-
tics (De cive 1642). De corpore is divided into four parts. Part I, “Computa-
tion or Logique,” is a preface to the Elementa proj ect as a  whole, and contains 
a treatise on logic. Parts II, III, and IV constitute a natu ral philosophy. Part 
II is called “Th e First Grounds of Philosophy.” Th is First Philosophy consists 
in “universal defi nitions . . .  the most common notions [distinguished] by 
accurate defi nition, for the avoiding of confusion and obscurity” (DC 6.17, 
“Th e Author’s Epistle to the Reader,” n.p.). In one place, Hobbes characterizes 
Part III as concerning “the expansion of space, that is, geometry” (DC, “Th e 
Author’s Epistle to the Reader,” n.p.). But elsewhere he is more expansive. 
He writes: “Next [i.e.,  aft er the First Philosophy],  those  things which may be 
demonstrated by  simple motion (in which Geometry consists).  Aft er Geom-
etry, such  things as may be taught or shewed by manifest action, that is, but 
thrusting from, or pulling  towards” (DC 6.17). Th e fi nal part contains the 
investigation of “the motion or mutation of the invisible parts of  things, and 
the doctrine of sense and imagination” (ibid.). Unlike Parts II and III, which 
involve, in princi ple, only defi nitions and that which follows directly from 
defi nitions, in Part IV, “Physiques,” Hobbes argues from physical eff ects 
observed by the senses to conjectured under lying  causes, “the fi nding out 
by the appearances or eff ects of nature which we know by senses, some 
ways and means by which they may be (I do not say, they are) generated” 
(DC 25.1).

Part II does, indeed, contain a number of impor tant defi nitions, includ-
ing defi nitions of space (7.2), time (7.3), body (8.1), accident (8.2), place (8.5), 
motion (8.10), and rest (8.11), among other  things. And it is in this context 
that Hobbes introduces certain general truths about bodies in motion.  Aft er 
off ering his basic defi nitions, Hobbes advances a statement very much like 
Descartes’ fi rst law of nature: “Whatsoever is at rest,  will always be at rest, 
 unless  there be some other body besides it, which, by endeavouring to get 
into its place by motion, suff ers it no longer to remain at rest” (DC 8.19). Th is 
statement is defended as follows:
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For suppose that some fi nite body exist and be at rest, and that all space be-
sides be empty; if now this body begin to be moved, it  will certainly be moved 
some way; seeing therefore  there was nothing in that body which did not 
dispose it to rest, the reason why it is moved this way is in something out of 
it; and in like manner, if it had been moved any other way, the reason of mo-
tion that way had also been in something out of it; but seeing it was supposed 
that nothing is out of it, the reason of its motion one way would be the same 
with the reason of its motion  every other way, wherefore it would be moved 
alike all ways at once; which is impossible. (DC 8.19)

Th at is, if a body at rest  were to begin to move, it would have to move in some 
direction or another, and  there is no reason why it should move one way 
rather than another. And for a similar reason, Hobbes holds that a body in 
motion  will remain in motion: “In like manner, whatsoever is moved,  will 
always be moved, except  there be some other body besides it, which causeth it 
to rest. For if we suppose nothing to be without it,  there  will be no reason 
why it should rest now, rather than at another time; wherefore its motion 
would cease in  every particle of time alike; which is not intelligible” (DC 
8.19).  Here the argument is very similar: if a body in motion  were to come to 
rest  there is no reason why it should come to rest in any one moment in pref-
erence to any other moment. From this Hobbes infers a more general princi-
ple, that the only  thing that can cause motion is another motion: “ Th ere can 
be no cause of motion, except in a body contiguous and moved” (DC 9.7).20 
Unlike Descartes’ arguments, which appeal to a God who sustains the world 
from moment to moment, Hobbes appeals to something like a princi ple of 
suffi  cient reason.

 Th ese accounts of motion occur in Part II of De corpore, ostensibly about 
defi nitions. But in Part III, his “Geometry,” Hobbes off ers a general state-
ment that looks a  great deal like Descartes’ second law. To understand that 
law we need to understand Hobbes’s notion of endeavor (conatus in the Latin 
version): “I defi ne ENDEAVOUR to be motion made in less space and time 
than can be given; that is, less than can be determined or assigned by exposi-
tion or number; that is, motion made through the length of a point, and in an 
instant or point of time” (DC 15.2). Despite appearances, this is not an in-
fi nitesimal motion:

For the explaining of which defi nition it must be remembered, that by a point 
is not to be understood that which has no quantity, or which cannot by any 
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means be divided; for  there is no such  thing in nature; but that, whose quan-
tity is not at all considered, that is, whereof neither quantity nor any part is 
computed in demonstration; so that a point is not to be taken for an indivis-
ible, but for an undivided  thing; as also an instant is to be taken for an undi-
vided, and not for an indivisible time. (DC 15.2)

Endeavor, then, is a genuine motion, the motion of a body through a fi nite 
(though “inconsiderable”) distance in a fi nite time.

It is in terms of this notion of endeavor that Hobbes characterizes (with-
out supporting argument) the motion of a body that is moved si mul ta-
neously by two diff  er ent  causes (motions):

And whatsoever the line be, in which a body has its motion from the con-
course of two movents, as soon as in any point thereof the force of one of the 
movents ceases,  there immediately the former endeavour of that body  will 
be changed into an endeavour in the line of the other movent. Wherefore, 
when any body is carried on by the concourse of two winds, one of  those 
winds ceasing, the endeavour and motion of that body  will be in that line, 
in which it would have been carried by that wind alone which blows still. 
(DC 15.5–6)

And from this he draws the following consequence:

And in the describing of a circle, where that which is moved has its motion 
determined by a movent in a tangent, and by the radius which keeps it in a 
certain distance from the centre, if the retention of the radius cease, that en-
deavour, which was in the circumference of the circle,  will now be in the 
tangent, that is, in a straight line. For, seeing endeavour is computed in a less 
part of the circumference than can be given, that is, in a point, the way by 
which a body is moved in the circumference is compounded of innumerable 
strait lines, of which  every one is less than can be given; which are therefore 
called points. Wherefore when any body, which is moved in the circumfer-
ence of a circle, is freed from the retention of the radius, it  will proceed in 
one of  those strait lines, that is, in a tangent. (DC 15.6; cf. DC 21.9)

Th is closely resembles what Descartes puts forward in his second law. As in 
the case of the earlier general statements about bodies in motion, this one 
does not involve God and his continual conservation. In this case it is taken 
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to follow from an apparently self- evident princi ple about the combination 
of motions.

Hobbes only touches on the prob lem of collision, and unlike Descartes, 
does not  really off er a developed account of impact, or any arguments for 
his account.21 But even more signifi cantly, Hobbes does not seem to pres-
ent any kind of conservation princi ple at all that corresponds to Descartes’ 
princi ple of the conservation of quantity of motion. Th is, presumably, cannot 
be done without God. Or, at least, Hobbes, I suspect, was unable to fi gure out 
how to do it without God. Or simply chose not to.22

 Th ere are a number of impor tant ways in which this account of motion 
is like that of Descartes— and unlike Galileo— despite Hobbes’s extravagant 
praise of the latter. Like Descartes, Hobbes is treating body as such, and not 
just heavy bodies: his statements are intended to follow in some way or another 
from the notions of body and motion, and to hold for all bodies. For Hobbes, 
as for Descartes, heaviness is not essential to body, but is only introduced 
 later,  aft er the general truths about body and motion are given. In the De 
corpore, heaviness appears as a physical phenomenon, to be explained in terms 
of a conjectured under lying physical mechanism, given in terms of bodies in 
motion that satisfy the constraints Hobbes had set out earlier in that work.23

But, in the context of our questions, are  these general constraints on mo-
tion laws? And are they mathematical? In both cases it is not entirely clear 
what to think.

Th e general statements about motion are not called “laws” by Hobbes, 
unlike Descartes did in the Principia philosophiae. Descartes’ work was 
published in 1644, and  there is no doubt that Hobbes knew that publication, 
and knew it well.  Th ere are references to Hobbes’s reaction to it in the cor-
respondence in his circle, and direct references to it in the De corpore, though 
not explic itly by name. One can suppose that the avoidance of the term “law” 
in this connection was an explicit decision on Hobbes’s part, one that was 
intended to express a diff erence between his view and Descartes’. And, as I 
noted earlier, unlike Descartes, Hobbes very self- consciously does not ap-
peal to God in his account of natu ral philosophy in general, and  these gen-
eral statements about motion in par tic u lar. Th is, for him, was a  matter of 
princi ple. In the De corpore, Hobbes argues explic itly that God can play no 
role in natu ral philosophy. He wrote:

Th e subject of [natu ral] Philosophy, or the  matter it treats of, is  every body of 
which we can conceive any generation, and which we may, by any consider-
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ation thereof, compare with other bodies, or which is capable of composition 
and resolution; that is to say,  every body of whose generation or properties 
we can have any knowledge . . .  Th erefore, where  there is no generation or 
property,  there is no philosophy. Th erefore it excludes Th eology, I mean the 
doctrine of God, eternal, ingenerable, incomprehensible, and in whom  there 
is nothing neither to divide nor compound, nor any generation to be con-
ceived. (DC 1.8)24

Th e question of God comes up in chapter 26 of De corpore, where Hobbes 
takes up the question of creation and the infi nity of the world. Such questions, 
he argues, are beyond reason to resolve. He wrote:

Th e questions therefore about the magnitude and beginning of the world, are 
not to be determined by phi los o phers, but by  those that are lawfully autho-
rized to order the worship of God. For as Almighty God, when he had brought 
his  people into Judæa, allowed the priests the fi rst fruits reserved to himself; 
so when he had delivered up the world to the disputations of men, it was his 
plea sure that all opinions concerning the nature of infi nite and eternal, known 
only to himself, should, as the fi rst fruits of wisdom, be judged by  those whose 
ministry he meant to use in the ordering of religion. (DC 26.1)

Th e questions, in short, are theological and not philosophical. And so, he 
concludes: “Wherefore I purposely pass over the questions of infi nite and 
eternal; contenting myself with that doctrine concerning the beginning and 
magnitude of the world, which I have been persuaded to by the holy Scrip-
tures and fame of the miracles which confi rm them; and by the custom of 
my country, and reverence due to the laws” (DC 26.1). Th ough he does not 
say so in the De corpore, I suspect that Hobbes’s attitude to Descartes’ 
grounding of the laws of nature would be the same, insofar as it requires us 
to know features of God, such as his immutability, that go beyond what we 
can know through reason.25

Another reason to won der  whether they are laws comes from their role 
in Hobbes’s natu ral philosophy. For Descartes the laws are central con-
straints on the be hav ior of bodies as such: they are isolated as special princi-
ples, and designated as propositions of special importance. But while Hobbes 
pres ents  these general statements about bodies in motion, he does not have 
the same ambitions for them. Th e general statements are presented almost 
in passing, in chapters entitled “Of Body and Accident,” “Of Cause and 
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Eff ect,” “Of the Nature, Properties, and divers considerations, of Motion 
and Endeavour.”  Th ere is no sense of  these as princi ples that are intended 
to structure nature, in any real sense.

Furthermore, their status is very close, if not identical, to that of geo-
metrical truths.  Here  there is another contrast with Descartes. For Des-
cartes, geometrical truths hold for extension as such,  whether it is the 
extension of purely geometrical bodies that do not exist in the real world of 
created  things, or for the objects of pure geometry, in de pen dent of real exis-
tence. But the laws of nature hold only for bodies that are created— and 
sustained—by God: they are truths that depend on God in a way in which 
geometrical truths do not.26 But their status in Hobbes is rather diff  er ent. 
As noted earlier, for Hobbes, natu ral philosophy begins in fi rst philosophy, 
and fi rst philosophy begins in defi nitions.  Aft er the defi nitions, though, 
“we should fi rst demonstrate  those  things which are proximate to the most 
universal defi nitions (in which consists that part of philosophy which is 
called “First Philosophy”), and then  those  things which can be demonstrated 
through motion simpliciter, in which consists geometry” (DC 6.17).27 Which 
is to say,  these facts about motion are taken to be general truths about mo-
tion on a par with geometrical theorems, eternal truths of a sort,  either 
 things that follow directly from defi nitions, or what he calls geometry. It 
should be noted  here that Hobbes’s conception of geometry is somewhat 
idiosyncratic. Motion, for Hobbes, is part of the subject  matter of geometry. 
Furthermore, for Hobbes geometry is just the science of extended body: un-
like Descartes, he recognizes no radical distinction between geometrical 
bodies and physical bodies. Writing in the Six Lessons to the Professors of the 
Mathematiques, published in 1656 with the En glish translation of the De 
corpore, Hobbes writes: “ there is no Subject of Quantity, or of Equality, or of 
any other accident but Body” (15). Th at is to say, all mathematical notions 
pertain to body. And this, for Hobbes, is especially true of motion. Th is, 
for Hobbes, determines the proper way of interpreting Euclidean geome-
try: “And by all  these a man may easily perceive that Euclide in the defi ni-
tions of a Point, a Line, and a Superfi cies, did not intend that a Point 
should be Nothing, or a Line be without Latitude, or a Superfi cies without 
Th ickness . . .  For Lines are not drawn but by Motion; and Motion is of Body 
only” (Hobbes 1656, 9). For Hobbes, in short, the objects of geometry are 
bodies, strictly speaking, and  there is no real distinction between natu ral 
philosophy and geometry, at least at the level of the general and foundational 
part of natu ral philosophy.28



 l aws of natu r e a n d the m athem atics of motion 153

Th at said,  there remains some uncertainty about how to understand 
what Hobbes is  doing. Hobbes certainly did not advance laws in the sense 
that Descartes did. But can we say that  these general assertions about the 
be hav ior of bodies in motion are not laws of nature, strictly speaking? 
One might make such a judgment on the basis of a philosophical concep-
tion of what constitutes a law of nature, perhaps. But I now feel somewhat 
reluctant to do so. Any such philosophical conception would seem to be a 
priori and perhaps a bit arbitrary, and certainly historically suspect. To look 
at  these Hobbesian texts at the moment when the notion of a law of nature 
in this sense is just being articulated suggests to me that  there may not be a 
clear answer to this question. And is Hobbes’s account of motion mathe-
matical in any sense? Well, it is certainly mathematical in the Hobbesian 
sense:  these general statements about bodies in motion are part of mathe-
matics as Hobbes understood it. But it is hard to ignore the fact that Hobbes’s 
conception of mathe matics is highly idiosyncratic, hardly a conception that 
we would recognize as mathematical. In this res pect, the situation with res-
pect to Hobbes is quite diff  er ent from the situation with res pect to Galileo, 
whose geometrical treatment of bodies in motion is mathematical in a very 
classical sense. Which is to say, it is unclear  whether Hobbes’s account of 
motion involves laws, and  whether we should say that it is mathematical.

conclusions

And so, in the end, the relation between the mathematization of nature 
and the discovery of the laws that govern the natu ral world would seem to 
be more complicated than expected. While  there are, no doubt, ways in 
which they are connected, they are also in many ways in de pen dent of one 
another, as the cases of Descartes, Galileo, and Hobbes show. More gener-
ally, I think that  there is a temptation to suppress the complexity of the so- 
called scientifi c revolution of the early modern period in  favor of a simpler 
narrative. In broad brush,  there are a number of impor tant developments in 
the period, including the mathematization of nature and the development 
of laws, which we have examined  here, but also the development of mechan-
ical models, the growth of experimentalism, the invention of new instru-
ments, including the microscope and telescope, the foundation of new 
institutions, such as the Royal Society and the Académie royale des sciences, 
the development of the learned journal as a means of communication, 
among other innovations. ( Th ere are also many “innovations” that arose in 



154 daniel garber

the period that did not survive.)  Th ere is a strong temptation to think that 
 these diff  er ent ele ments march together to produce something that we can 
call Th e New Science, which replaced the Aristotelian natu ral philosophy 
that dominated the intellectual world in the period before. When we look at 
 these more carefully, I think that we  will realize that the transition to mod-
ern science was much more complicated than that.29 But that is an argument 
for another occasion.
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I would like to thank the participants in the discussion of my paper at the 
conference, “Th e Language of Nature,” for a lively discussion. I would espe-
cially like to thank the organizers, Geoff  Gorham, Ed Slowik, Ben Hill, and 
Ken  Waters, both for organ izing the conference and for the very detailed 
comments on my essay. I owe a special debt to Ursula Goldenbaum, my 
commentator during the conference session, both for her comments and for 
the very helpful exchanges we had on the paper  aft er the conference. 
 Because of all of  these interventions, this paper is much changed, and, I 
hope, much improved from the version that I had originally submitted.
 1. Th e pioneering study of the history of the laws of nature is Zilsel 
(1942). Another impor tant earlier study is Milton (1981). Milton develops 
his views further in Milton (1998). For more recent studies see, for example, 
Steinle (1995), Roux (2001), Henry (2004), and the essays collected in Das-
ton and Stolleis (2008). Dana Jalobeanu has emphasized to me for many 
years that the view of nature as governed by overarching law is a central 
feature of Stoic thought. See her essay (Jalobeanu n.p.). Henry (2004, 79), in 



 l aws of natu r e a n d the m athem atics of motion 155

defending the priority of Descartes on the laws of nature, makes an impor-
tant contrast between laws of nature as “merely references to the regularity 
of nature,” as opposed to “the concept of a law of nature as a specifi c and 
precise statement which codifi es observed regularities in nature but which 
is also assumed to denote an under lying causal connection, and therefore 
can be said to carry explanatory force.”
 2. See references cited above in note 1.
 3. All translations from Descartes are taken from Descartes 1985–91, 
except where other wise noted.
 4. For a discussion of Descartes’ account of collision, see Garber (1992, 
chapter 8).
 5. On directionality (what Descartes calls determination) see Garber 
(1992, 188ff ). On the conservation princi ple, see Garber (1992, 204ff ).
 6. Th e argument  here is that light is pressure in the ether, which derives 
from the rotation of the vortices around each sun by way of the second law.
 7. On this see Descartes, Le monde, chap. 11 (AT 11:72ff ) and PP 4.23ff .
 8. Cf. Descartes to Plempius, October 3, 1637 (AT I 410–11 and 420–21).
 9. For a discussion of Descartes’ attempts to deal with the prob lem of 
 free fall, see Koyré (1978) and Jullien and Charrak (2002).
 10. Translated in Descartes (1983).
 11. Translated in Galilei (1957, 182). Th anks to Ursula Goldenbaum for 
pointing out this passage to me.
 12. References to the Discorsi  will be given in EN 8. All translations are 
from Galilei (1974). Since this translation is keyed to the pagination in EN 
8, I  won’t cite it separately.
 13. Th e argument goes roughly as follows: In uniformly accelerated 
motion as Galileo defi nes it, the speed is proportional to the time. Conse-
quently the terminal speed is proportional to the time. But by the so- called 
mean- speed theorem, proven in prop. I theorem I (EN 8:208ff ), a body uni-
formly accelerated (on Galileo’s defi nition)  will move a distance in a given 
time equal to the distance that it would go in the same time  were it moving 
at half the terminal speed. So the distance fallen is proportional to one half 
of the terminal speed times the time. But by the defi nition of uniform ac-
celeration, the terminal speed is proportional to the time. And so the dis-
tance fallen is proportional to the square of the time.
 14. At least one of Galileo’s readers— René Descartes— was not im-
pressed and could not fi nd the patience to read them: “I  shall say nothing of 
the geometrical demonstrations of which the book is full, for I could not 
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summon the patience to read them, and I am prepared to believe they are 
all correct. When looking at his propositions, it simply struck me that you 
do not need to be a  great geometrician to discover them; and he does not 
always take the shortest pos si ble route, which leaves something to be de-
sired (Descartes to Mersenne, October 11, 1638, AT 2 388).
 15. On the notion of “inertia” in the early seventeenth  century, see Garber 
(1992, 253ff ).
 16. Translated in Galilei (TCWS 20). Cf. EN 7 56, TCWS 31–32.
 17. Translated in Galileo (1957, 63), slightly altered, as discussed in the 
following note.
 18. A key question, of course, is the proper translation of the term “sin-
tomi” in Galileo. In the previously cited passage, Drake translates it as “laws.” 
Th is seems clearly wrong. Galileo does not use the term oft en, but in two pas-
sages he pairs it with “accidenti,” suggesting that they are virtual synonyms. 
See Intorno alle cose che stanno in su l’acqua . . .  (EN 4 115) and Discorso del 
fl usso e refl usso del mare . . .  (EN 5 377). It also appears in the Letters on Sun-
spots, where Reeves and Van Helden translate it as “characteristics.” (EN 5 117, 
Galilei and Scheiner [2010]. See also EN 4 698 and EN 7 189 for similar uses 
of the term.) I am grateful for help on this tricky issue from Eileen Reeves.
 19. Th roughout, the En glish is quoted from the anonymous En glish 
translation (Hobbes 1656).
 20. Th ough Hobbes goes on at some length in 9.7 to establish this, so far 
as I can see it follows pretty directly from the considerations in 8.19.
 21. See DC 15.8, for example. Hobbes’s account of collision is made par-
ticularly complicated by the fact that only motion resists motion, so that a 
body at rest does not resist the acquisition of new motion. For a very helpful 
discussion of what amounts to the ele ments of Hobbes’s account of impact 
in De corpore, see Morris (2007).
 22. In his essay, Gorham (2013) pres ents a somewhat diff  er ent view of 
Hobbes’s physics and its relation to God. Gorham takes seriously Hobbes’s 
vari ous statements that God is body, arguing that for Hobbes, God is a fl uid 
body that infuses the universe, “most pure, most  simple corporeal spirit” 
(Gorham 2013, 254). He then argues that God, understood in this way, “is 
the perpetual source of motion, and hence diversity, in a material world gov-
erned by mechanical princi ples” (252). Th is, in part, would seem to address 
the prob lem in Hobbes’s natu ral philosophy that “any motion in the world 
must dissipate in no time, like shock waves” (251). And so, Gorham suggests, 
Hobbes’s physics, like Descartes’, would seem to involve divine sustenance 
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and a kind of conservation princi ple. Th is is a fascinating suggestion. But it 
is worth pointing out a few  things. First of all, even if the material God sup-
ports motion in this way, Gorham does not suggest that the general state-
ments about motion that correspond to Descartes’ laws are in any way 
derived from God as cause of motion. Second, even though we might see the 
appeal to a material God in the passages that Gorham cites as addressing the 
continual diminution of motion in the world,  there is no place where Hobbes 
articulates a conservation princi ple. And fi  nally, the support for Gorham’s 
position is almost exclusively in texts signifi cantly  later than the 1655 publi-
cation of the De corpore, particularly the “Answer to Bramhall,” written 
prob ably in 1668 but not published  until 1682,  aft er Hobbes’s death. My 
focus in this text is on the doctrine in the much more widely read and infl u-
ential De corpore.
 23. See the account of heaviness in DC 30.
 24. Gorham (2013) would disagree with this, of course. See note 22.
 25.  Here, again, we may be dealing with a view that Hobbes gave up in 
his  later writings, if Gorham (2013) is right in its interpretation.
 26. Th is is actually a bit subtle since even geometrical truths for Des-
cartes depend on God by way of his (in)famous doctrine of the creation of 
the eternal truths. But geometrical truths depend on God for their creation, 
as do all eternal truths, while the laws of nature depend on God in his 
moment- by- moment sustenance of bodies in the material world.
 27. My translation of the 1655 Latin.
 28. On this, see Jesseph (1999), chapter 3.  Th ere is, however, a distinction 
between the proj ect of Parts II and III of the De corpore, his fi rst philosophy 
and his geometry, which are grounded in defi nitions and what can be drawn 
from defi nitions, and the proj ect of Part IV, which he calls physics proper, 
which involves conjectured mechanisms.
 29. I have tried to sketch out an alternative model of intellectual change 
in the period in Garber (2016).
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In his 1623 essay “Th e Assayer,” Galileo notoriously claimed that 
the “book of nature” was written in the language of mathe matics.1 Yet when 
we consider his  actual formulation of the laws of nature (most notably the 
law of  free fall in the Two New Sciences) it becomes apparent that he took 
the language of mathe matics to be something rather diff  er ent than the 
mathematical formulations we typically use  today. As is well known, Gali-
leo used the Euclidean- Eudoxian language of proportions to express the 
law of  free fall, formulating it in terms of ratios between distances and the 
squares of elapsed times, rather than as a second- degree equation linking 
distance covered to elapsed time.2  Because the 1637 publication of Des-
cartes’ Géométrie marked the fi rst appearance of analytic geometry, it is no 
surprise that Galileo did not employ its techniques to state his results. Nev-
ertheless, the Galilean preference for the traditional language of ratios and 
proportions reminds us that the mathe matics employed by seventeenth- 
century natu ral phi los o phers is, in many cases at least, fi rmly rooted in 
classical Greek doctrines. Even Newton, who developed his calculus of fl ux-
ions some two de cades before the publication of the Principia, chose to 
develop his celestial mechanics in the classical language of ratios and pro-
portions drawn from book 5 of the Euclidean Ele ments.3

My purpose  here is to investigate a seventeenth- century dispute over 
how best to interpret the classical doctrine of ratios and to link  these dif-
ferences to alternative programs for mechanics. In par tic u lar, I wish to 
focus on the doctrines of Isaac Barrow (fi rst Lucasian Professor of Mathe-
matics at Cambridge) and John Wallis (Savilian Professor of Geometry at 
Oxford from 1649  until his death in 1703).  Th ese two professors took quite 
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diff  er ent approaches to the account of ratios developed in the Euclidean 
Ele ments. Wallis identifi ed ratios with quotients arising from division, 
seeking thereby to place the theory of ratios within a very general alge-
braic theory that he identifi ed as the mathesis universalis, or universal 
mathe matics.4 Barrow, in contrast, insisted that the doctrine of ratios could 
only be properly understood when it was taken as grounded in essentially 
geometric concepts with no algebraic content. A signifi cant part of this 
dispute dealt with the prospects of applying the theory of ratios to the 
study of the be hav ior of bodies in motion. In Part I of his 1670 Mechanica, 
Wallis insisted that the only way to develop a truly general mechanics was 
to follow the algebraic approach. In contrast, Barrow insisted that such 
physico- geometrical concepts as space, body, and motion  were the only ap-
propriate foundation for a mathe matics that could be applied to nature. I 
begin with a general overview of the classical account of ratio and propor-
tion, then turn to a consideration of Wallis’s and Barrow’s interpretations 
of the theory. I close by examining the connection between the theory of 
ratios and the foundations of mechanics, focusing primarily on Wallis’s 
Mechanica.

the classical theory of  ratios

Seventeenth- century treatments of the theory of ratio and proportion all 
arise from the interpretation of a series of defi nitions in Euclid’s Ele ments. 
Th e relevant defi nitions from book 5, which introduced the concepts of ratio 
and proportion, are  these:

3.  A ratio is a sort of relation in res pect of size between two magnitudes of 
the same kind.

4.  Magnitudes are said to have a ratio to one another which are capable, 
when multiplied, of exceeding one another.

5.  Magnitudes are said to be in the same ratio, the fi rst to the second and 
the third to the fourth, when, if any equimultiples what ever be taken 
of the fi rst and third, and any equimultiples what ever of the second 
and fourth, the former equimultiples alike exceed, are alike equal to, 
or alike fall short of, the latter equimultiples respectively taken in 
corresponding order.

6.  Let magnitudes which have the same ratio be called proportional. 
(Ele ments, bk. 5, defs. 3–6)5
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Th us understood, a ratio is not a quotient formed by the division of one 
number by another, but rather a relation that holds between geometric mag-
nitudes. Magnitudes are grouped into species or kinds, and the third and 
fourth defi nitions guarantee that it is only within species that a ratio can be 
constructed or magnitudes compared.

To take an example: lines,  angles, surfaces, and solids are fundamentally 
distinct kinds of magnitudes, and  there is no way to compare directly the 
magnitude of one kind (a line, say) with the magnitude belonging to another 
(such as an  angle). Th is is  because no number of lines could ever exceed an 
 angle, as required by the fourth defi nition. To inquire into how many lines 
might amount to an  angle is a nonsense question, on par with seeking to 
determine how many potatoes could equal a symphony. Th us,  there is no 
“relation in res pect of size” holding between heterogeneous magnitudes. 
Nevertheless, defi nitions 5 and 6 do permit the comparison of ratios across 
species of magnitude in a proportion, so it makes sense to say that the ratio 
L1 : L2 between the length of two lines is the same as the ratio V1 : V2 between 
the volumes of two spheres. In other words, the proportion L1 : L2 : : V1 : V2 
is legitimate, even though the magnitudes V1 or V2 cannot be directly com-
pared with L1 or L2. Likewise, the defi nition of equality of ratios (defi nition 
5) does not assert that α : β : : γ : δ whenever α × δ = γ × β  because the relevant 
magnitudes may be heterogeneous and incapable of being multiplied to-
gether. Instead, sameness of ratio is defi ned in defi nition 5 by the preserva-
tion of order relations  under arbitrary equimultiples.

Although the classical theory of ratios had an impeccable Euclidean ped-
igree and was oft en put forward as a paradigm of rigorous mathe matics, a 
 great many seventeenth- century authors sought to introduce an alternative 
understanding of ratios. Much of the motivation for moving beyond the 
Euclidean scheme arose from concerns about the status of defi nition 5: it 
seemed too prolix and intricate to be a true fi rst princi ple of geometry, and 
although its truth was never challenged it was thought that  there must be 
simpler and more elegant princi ples from which the theory of ratios could 
be developed.6 Th is alternative approach to ratio and proportion can be use-
fully termed the “numerical” treatment of ratios, in contrast with the classi-
cal “relational” theory.

Th e fundamental diff erence between  these two approaches can be 
brought to light by asking  whether ratios themselves are quantities; that is, 
 things that can be greater or less. According to the relational theory, the an-
swer is no: ratios are not quantities, but rather relations that hold between 
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two quantities. Just as it would be nonsense to assert that such numerical 
relations as “greater than” or “divisible by” are themselves some sort of num-
ber or magnitude, the relational theory of ratios holds that a ratio is radi-
cally distinct from the quantities that stand in a ratio. From the standpoint 
of the numerical theory, however, it makes perfect sense to say that one ra-
tio could be greater than another. On the numerical understanding, each 
ratio is taken to have a size (or “denomination” or “exponent”), and the 
sameness of two ratios amounts to their having the same size, denomina-
tion, or exponent. Th is approach assimilates ratios into a general domain of 
magnitudes, and it avoids the complex Euclidean defi nition of the sameness 
of ratio in terms of the preservation of order relations  under arbitrary equi-
multiples.

In point of fact, the Euclidean doctrine admits the comparison of ratios 
as to greater and less, which makes it seem plausible that ratios themselves 
should count as quantities. In the seventh defi nition of Ele ments book 5, Eu-
clid states, “When, of the equimultiples, the multiple of the fi rst magnitude 
exceeds the multiple of the second magnitude, but the multiple of the third 
magnitude does not exceed the multiple of the fourth, then the fi rst is said 
to have a greater ratio to the second than the third has to the fourth.” So, 
the ratio 5:3 exceeds the ratio 7:8,  because by multiplying the fi rst and 
third terms by 2 and the second and fourth terms by 3, we discover that 
(5 × 2) > (3 × 3) while (7 × 2) < (8 × 3). But if anything capable of a “greater 
than” comparison is a quantity in its own right,  there seems to be a solid case 
for attributing quantities to ratios.

Notwithstanding its appealing simplicity, the numerical theory never-
theless  faces its own diffi  culties. It is natu ral to assume that the criterion for 
sameness of ratio in the numerical theory should be expressed in the princi-
ple that the ratio α : β is the same as the ratio γ : δ just in case α × δ = γ × β. 
However, if the quantities α and δ are diff  er ent species of magnitudes,  there 
is no clear sense to be made of the notion that they could be multiplied to-
gether. Indeed, this is precisely why the Euclidean defi nition requires that 
two magnitudes have a ratio to one another only if each can exceed the other 
by being multiplied.

Th e principal consequence  here is that the numerical theory requires all 
ratios to be homogeneous, or capable of direct comparison with one another. 
One natu ral way to do this would be to characterize the denomination of a 
ratio as a quotient formed by dividing the antecedent of the ratio by its 
consequent. But  doing this raises the diffi  culty of understanding how the 
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quotient of two incommensurable magnitudes can be understood. Classi-
cally conceived, the quotient is a fraction that arises from the division of 
integers— a fact refl ected in the etymological observation that the root of the 
term is the Latin quoties, or “how many.” In eff ect, quotients are simply ra-
tional numbers that express how many common units of the denominator 
are contained in the numerator. Incommensurable magnitudes cannot, of 
course, be understood as quotients in this sense, so the numerical theory 
of ratios seems committed to expanding the traditional concept of a quo-
tient to include quotients of irrational magnitudes, that is, to making sense 
of expressions such as 7π / 113 . As a result, the development of the nu-
merical theory of ratios required a fundamental reconsideration of the tra-
ditional concept of number, namely one that expands the traditional Greek 
notion of number (άριτημόζ), conceived as a collection of units, to include 
all magnitudes in an abstract general theory of magnitudes that is funda-
mentally algebraic.7

Th e diff erences between  these two approaches to the Euclidean theory 
of ratios came into sharper focus in the thorny issue of compounding 
ratios— a much- disputed point that traces back to a pseudo- Euclidean defi ni-
tion that appeared in some editions of book 6. Th e (now generally regarded 
as spurious) fi ft h defi nition of book 6 reads, “A ratio is said to be com-
pounded of ratios when the sizes [πηλιϰότητεζ] of the ratios multiplied to-
gether make some (ratio, or size).” Th e defi nition is unusual for its apparent 
reference to the ‘sizes’ of the compounded ratios, as well as its employment 
of the arithmetical operation of multiplication to construct a ratio from the 
sizes of two given ratios. None of this makes any sense on the relational 
theory,  because a ratio is not a quantity and  there is no sense in which it 
might have a size. For  these reasons the defi nition is now regarded as a late 
emendation to the Euclidean text, although it was still regarded as canoni-
cal in the seventeenth  century.8 Th is fact led to some creative interpreta-
tions of the text. Barrow noted that “ratios, as they lack all quantity, can 
neither be added nor multiplied,”9 and took this to indicate that the Greek 
term πηλιϰότητεζ should be understood as indicating the quantities 
contained in the compounded ratios rather than any quantities pertaining 
to the ratios themselves. A further oddity with this defi nition is the fact that 
it is never used in the Ele ments, even in the one place where Euclid speaks of 
compounded ratios (Ele ments 6 23).

What ever conceptual prob lems the defi nition may pres ent for the rela-
tional theory of ratios, it makes perfect sense on the numerical theory of ra-
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tios. If ratios have sizes, or if they are identifi ed with quotients, then  there is 
no obstacle to accepting the notion that multiplication of two ratios can 
form a third. For instance, if the ratios 3 : 8 and 9 : 11 are compounded, the 
new ratio  will arise from the multiplication of the quotients 3/8 and 9/11, 
yielding 27 : 88 as the compounded ratio.

Th e two competing accounts of the nature of ratios did not originate in 
the seventeenth  century; in fact, the diff erences between the relational and 
numerical theory  were discussed among medieval authors.10 For my pur-
poses, however, the most impor tant exchanges over this topic occurred in 
the seventeenth  century in the works of John Wallis and Isaac Barrow. It is 
to an analy sis of their doctrines that I now turn.

wallis and the numerical theory of ratios

Wallis was one of the most prominent advocates of the numerical theory of 
ratios. He argued for it at length in his 1657 treatise Mathesis Universalis, 
which originated as Savilian lectures and is largely devoted to making the 
case that the princi ples of geometry are subordinate to  those of arithmetic.11 
Wallis was, in fact, a proponent of a view I term “algebraic foundationalism,” 
according to which all of geometry can and should be developed from ar-
ithmetical princi ples, which in turn can be shown to be special cases of more 
fundamental princi ples of algebra, or the “arithmetic of species.”12 In other 
words, Wallis held that algebraic theory is the proper foundation for all of 
mathe matics.

In the Mathesis Universalis Wallis argued that geometrical results can 
be achieved more perspicuously and naturally by the use of arithmetical ar-
guments. In ser vice of this goal he devoted the twenty- third chapter to a 
series of “arithmetical” demonstrations of results from the second book of 
Euclid’s Ele ments, an enterprise he took to illustrate his contention that the 
impor tant results in geometry are ultimately based on arithmetical princi-
ples. He argued:

 Because some take the geometric ele ments for the basis of all mathe matics, 
they even think that all of arithmetic is to be reduced to geometry, and that 
 there is no better way to show the truth of arithmetical theorems than by 
proving them from geometry. But in fact arithemtical truths are of a higher 
and more abstract nature than  those of geometry. For example, it is not 
 because a two foot line added to a two foot line makes a four foot line that two 
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and two are four, but rather  because the latter is true, the former follows. (MU 
11; OM 1 53)

Th is led Wallis to conclude:

Th e close affi  nity of arithmetic and geometry comes about, rather,  because 
geometry is as it  were subordinate to arithmetic, and applies universal princi-
ples of arithmetic to its special objects. For, if someone asserts that a line of 
three feet added to a line of two feet makes a line fi ve feet long, he asserts this 
 because the numbers two and three added together make fi ve; yet this calcu-
lation is not therefore geometrical, but clearly arithmetical, although it is 
used in geometric mea sure ment. For the assertion of the equality of the 
number fi ve with the numbers two and three taken together is a general as-
sertion, applicable to any other kinds of  things what ever, no less than to geo-
metrical objects. For also two angels and three angels make fi ve angels. And 
the very same reasoning holds of all arithmetical and especially algebraic 
operations, which proceed from princi ples more general than  those in geom-
etry, which are restricted to mea sure. (MU 11; OM 1 156)

Th e remark that “especially algebraic operations” are abstract and apply to 
“any kinds of  things what ever” indicates Wallis’s notion of algebra as a 
highly general science of quantity with no specifi c connection to any spe-
cifi c kind of number, magnitude, or mea sure.

Th is doctrine leads quite naturally to the numerical theory of ratios. At 
the very least, the proj ect of interpreting all of mathe matics as essentially 
algebraic is helped along by reducing the entire theory of ratios to a special 
case of arithmetic, which in turn happens to be a special case of algebra. As 
Wallis saw the  matter, the comparison of magnitudes in ratios renders all 
ratios homogeneous. In his words: “Where a comparison of quantities ac-
cording to ratio is made, it frequently happens that the ratio of the compared 
quantities leaves the genus of magnitude of the compared quantities and is 
transferred into the genus of number, what ever that genus of the compared 
quantities may be . . .  And this is the principal reason I affi  rm that the doctrine 
of ratios belongs rather to the speculations of arithmetic than geometry” 
(MU 25; OM 1 136). Wallis’s reasoning can be summarized as follows: when 
we construct a proportion between two pairs of magnitudes, we have estab-
lished that the two ratios are of the same size. But the only way to compare 
 things together in regard to their size is to have a common mea sure of their 
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sizes. Th erefore,  there must be some common mea sure for all ratios, which 
requires that they be instances of a very general concept of number, more 
abstract than the traditional Euclidean defi nition of a number (άριτημόζ) 
as simply a collection of units.

In fact, Wallis argued that Euclid’s treatment of ratios in the fi ft h book 
of the Ele ments should be demonstrated “arithmetically,” and in chapter 35 
of the Mathesis Universalis he undertook precisely this task. Not surpris-
ingly, Wallis took Euclid’s defi nition of the sameness of ratios to be defec-
tive, and declared:

We have thought it fi t to omit this defi nition from our demonstrations, al-
though it is indeed true and well enough suited to Euclid’s purpose, nor do 
we examine proportionals according to this criterion. And indeed it seems 
somewhat complex, and perhaps not perspicuous enough— especially to 
learners— nor indeed does it immediately res pect the nature of proportion-
als, but rather some remote aff ection of them. But for us, who earlier judged 
ratios by how much, it seems suffi  cient to prove the identity or equality of 
ratios if  there is an equality or identity of quotients. So, for instance, if a/α =  
b/β, then a : α : : b : β , and vice versa. (MU 35; OM 1 184)

Wallis’s thoroughgoing identifi cation of ratios with quotients is equally ap-
parent in his approach to the question of compounding ratios. He held that 
the obscurities surrounding the fi ft h defi nition of book 6 could be set aside 
by showing that Euclid himself accepted the numerical theory of ratios. In a 
Savilian lecture from 1663 ( later published in the second volume of his Op-
era Mathematica of 1693) Wallis undertook to make this case. He fi rst ar-
gued that the Euclidean defi nition of the term ‘ratio’ must be given a slightly 
diff  er ent interpretation than the tradition had accorded it. In par tic u lar, he 
held that Euclid’s “sort of relation in res pect of size between two magnitudes 
of the same kind” (Ele ments, book 5, def. 3) must be rephrased as “a ratio is 
that relation or habitude of homogeneous magnitudes to one another in 
which it is shown how the one is to the other, considered according to quan-
tuplicity” (OM 2 665).

Th e neologism ‘quantuplicity’ is Wallis’s term for how much one magni-
tude is in comparison with another, or how many times the one is contained 
in the other. Specifi cally, he intended to allow relations of quantuplicity that 
cannot be expressed as ratios of integers, so that the dia meter of a circle 
would be the 1/π th quantuple part of the periphery. Given this understanding 
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of ratios, the composition of ratios is a  simple  matter: each ratio has an “ex-
ponent” that indicates its quantity, which is the quotient arising from the 
division of the antecedent by the consequent. Th us, according to Wallis, 
defi nition 5 of book 6 should be understood to say “a ratio is said to be 
compounded of ratios when the exponents of the ratios multiplied together 
make the exponent of that ratio” (OM 2 666). Having considered Wallis’s 
exposition of the numerical theory of ratios, we can now turn to Barrow’s 
response.

barrow in defense of the relational theory

Barrow termed the theory of ratios “the very soul of mathe matics,”  because 
he saw in it a doctrine “on which nearly every thing remarkable and abstruse 
demonstrated in mathe matics ultimately depends” (LM 16; MW 1 252). His 
Lectiones Mathematicae originated as Lucasian lectures in the 1660s and 
 were principally concerned with defending Euclid’s account of ratios. In 
point of fact Barrow understood that his defense of the classical doctrine is an 
essential part of a broader program to see geometry established as the one 
true foundation for all of mathe matics. Barrow’s announced purpose in vin-
dicating Euclid was to show that “ there is nothing in the  whole work of the 
Ele ments more subtly found out, more solidly established, or more accu-
rately treated than this  whole doctrine of proportions” (LM 23; MW 1 378). 
In the end, I think that this defense of the classical approach to ratios is due in 
large part to Barrow’s conception of geometric demonstration as founded in 
the consideration of true  causes that are best understood by attending to the 
motions by which geometric magnitudes are produced.

Barrow viewed any departure from Greek tradition with suspicion, and 
he spent many pages of the Lectiones Mathematicae defending the relational 
doctrine of ratios against its modern rivals.13 Indeed, he asked his audience 
to “ pardon my contentiousness, and not hold it against me that I have been 
led by a certain piety to undertake to vindicate the  father and prince of ge-
ometry from the undeserved reproaches that are heaped upon him from 
 every side” (LM 18; MW 1 283).

Barrow’s response to Wallis was to turn the  tables on his opponent and 
mount a case for the primacy of geometry over arithmetic. One of the main 
themes of the Lectiones Mathematicae is Barrow’s argument for what I call 
“geometric foundationalism,” or the view that all of mathe matics is ulti-
mately based on geometric concepts and princi ples. Barrow argued that 
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arithmetic lacked the kind of determinate content necessary to found a true 
science. “Any number at all,” he declared, “may with equal right denote and 
denominate any quantity” (LM 3; MW 1 51). Barrow’s point  here can be il-
lustrated as follows: a given line may be deemed one, one hundred, or one 
thousand, depending on  whether we divide it into meters, centimeters, or 
millimeters.

Barrow responded to Wallis’s argument that the arithmetical fact that 
2 + 2 = 4 is too general to be based solely on geometry, from which he had 
concluded that geometry must be founded on arithmetical or algebraic con-
cepts. To this reasoning, Barrow retorted:

I respond by asking, How does it happen that a line of two feet added to a 
line of two palms does not make a line of four feet, four palms, or four of any 
denomination, if it is abstractly, i.e. universally and absolutely true that two 
plus two makes four? You  will say, Th is is  because the numbers are not ap-
plied to the same  matter or mea sure. And I would say the same  thing, from 
which I conclude that it is not from the abstract ratio of numbers that two 
and two make four, but from the condition of the  matter to which they are 
applied. Th is is  because any magnitude denominated by the name two added 
to a magnitude denominated two of the same kind  will make a magnitude 
whose denomination  will be four. Nor indeed can anything more absurd be 
 imagined than to affi  rm that the proportions of magnitudes to one another 
depend upon the relations of the numbers by which they are expressed. (LM 
3; MW 1 53)

Consequently, in Barrow’s view,  there is no arithmetical fact without the 
specifi cation of a unit, but such a specifi cation is too arbitrary to be the basis 
of a proper science. Th is led him to conclude that “mathematical number is 
not some  thing having existence proper to itself, and  really distinct from 
the magnitude which it denominates, but is only a kind of note or sign of 
magnitude considered in a certain manner” (LM 3, MW 1 56). Th e result is 
that “number (at least that which the mathematician contemplates) does not 
diff er in the least from that quantity which is called continuous, but is 
formed wholly to express and declare it. And neither are arithmetic and ge-
ometry conversant about diverse  matters, but equally demonstrate proper-
ties common to one and the same subject, and from this it  will follow that 
many and  great advantages derive to the republic of mathe matics” (LM 3; 
MW 1 47). Barrow took this argument for geometrical foundationalism to 
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the extreme of denying that algebra is a mathematical science at all. In his 
estimation algebra fails to qualify as an in de pen dent science  because it is at 
best a fragment of logic, and at worst a collection of purely formal rules for 
the manipulating symbols. So, where Wallis and  others took algebra to be a 
highly abstract science that took for its object quantity in general, Barrow 
dismissed it as unscientifi c “ because it has no object distinct and proper to 
itself, but only pres ents a kind of artifi ce, founded on geometry (or arithme-
tic), in which magnitudes and numbers are designated by certain notes or 
symbols, and in which their sums and diff erences are collected and com-
pared” (LM 2; MW 1 46).

 Th ese considerations support Barrow’s central objection to the numeri-
cal theory of ratios, namely that Wallis is guilty of a kind of category  mistake 
in thinking that ratios are quantities that can be studied by an abstract, al-
gebraic science of quantity.  Because a ratio is a “pure, perfect relation,” it 
cannot “pass into another category and become a genus of quantity” (LM 
20; MW 1 318). In other words, to treat a ratio itself as a quantity is to con-
fuse a relation with one or another of its relata— the ratio is a way for two 
quantities to be compared, but it cannot itself be a quantity. Barrow admit-
ted that the classical theory of ratios permits such locutions as “the ratio α : 
β exceeds the ratio γ : δ” (in accordance with defi nition seven of book 5 of 
the Ele ments). However, he held that this can be understood without requir-
ing ratios to be quantities. Rather, such expressions arise whenever the an-
tecedent of one ratio exceeds the antecedent of another, provided that the 
ratios have common consequents. He explained: “What ever is commonly at-
tributed to ratios, only truly and properly agrees with the denominators of 
ratios, that is, to their antecedents reduced to a common consequent. Th e 
quantity that  others assign to ratios is nothing other than the quantity and 
ratio of the denominators, and when they think they add or subtract ratios 
themselves, they only add or subtract  these denominators, and this is the 
same  thing when they multiply or compound, divide or resolve them” (LM 
20; MW 1 315). Th e methodological picture that emerges from  these con-
siderations is fairly straightforward. Geometry is the foundational science 
for all of mathe matics, in the sense that  every mathematical truth is ulti-
mately analyzable as a statement about the properties and relations of con-
tinuous magnitudes. Th e correct method for investigating  these properties 
and relations is by constructions carried out in accordance with the defi ni-
tions, axioms, and postulates of Euclidean geometry. Such constructions 
 will typically aim to establish ratios and proportions, which constitute the 
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“very soul” of mathe matics. Further,  these constructions  will constitute 
demonstrations that proceed from true  causes, and Barrow devoted the 
sixth of his Lectiones Mathematicae to establishing the “causality” of geo-
metric demonstrations. Th e causality he has in mind “can be called formal 
causality, from the fact that from one property fi rst taken as given, the 
remaining aff ections [of a geometric object] arise as from a form” (LM 6; 
MW 1 93).14  Th ere is no signifi cant role for algebra in this scheme, since all 
of the demonstrative work is accomplished by constructions that trace 
back to fi rst princi ples that articulate the essential form or nature of geo-
metric objects.

from ratios to mechanics

Th e diff erences of opinion separating Wallis and Barrow  were based in di-
vergent conceptions of how best to interpret Euclidean geometry, and par-
ticularly the theory of ratios. Yet  these diff erences  were not confi ned to the 
realm of pure mathe matics. Wallis’s algebraic foundationalism led him to 
take the science of mechanics as an application of the very general algebra 
or “arithmetic of species” that he regarded as the true mathesis universalis. 
Barrow, in contrast, held that mechanics was essentially a branch of geom-
etry proper, where such concepts as space, time, and motion turn out to be 
both the foundations of pure geometry and the basis for a science of mate-
rial bodies.

Wallis developed his account of the connection between the theory of 
ratios and the science of motion in the Mechanica, which begins by declar-
ing mechanics to be “that part of geometry that treats of motion, and inves-
tigates through geometric reasonings and demonstrations, by what force any 
motion is eff ected” (Mechanica 1; OM 1 575). Th e “geometric reasonings” in 
the Mechanica are taken from the theory of ratios, so that  aft er the defi nitions 
of key terms, the fi rst propositions deal with ratios and their composition. 
Th us, Proposition II reads “When a ratio is composed of two or more [ratios], 
given the components, the composite is given. Th at is to say, having multiplied 
the exponents of the compounds into one another, the exponent of the com-
posite may be determined” (Mechanica 1, prop. 2; OM 1 580). In the scholium 
to this proposition, Wallis explains that “Euclid calls the indices or exponents 
of compounded ratios πηλιϰότητεζ, which his interpreters call ‘quantities,’ 
but I prefer ‘quotients’, for it means that which arises from the division of 
the antecedent term by the consequent” (Mechanica 1, prop. 2; OM 1 580).
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Although the initial propositions in Mechanica are “taken from the doc-
trine of ratios,” Wallis explained that their demonstrations are so contrived 
that they apply both to the general algebra of species and to the specifi c case 
of geometric lines and fi gures. Stating and demonstrating such princi ples 
algebraically renders them “more general,” so as to apply to any magnitudes 
what ever, thereby making ratios of geometric fi gures “only a single case 
among many, that are contained within a universal proposition” (Mechan-
ica 1, prop. 6, Scholium; OM 1 583). Th e consequence of Wallis’s taking the 
theory of ratios as part of a universal algebra is that it can deliver results that 
extend beyond geometry and enable the doctrine of motion to be studied 
mathematically (i.e., algebraically).

Th e cornerstone of Wallis’s approach is Proposition VII of the Mechanica: 
“Eff ects are proportional to their adequate  causes.” Th is proposition, which 
says nothing directly about lines, fi gures, or other geometric objects, permits 
us to reason about the relation between  causes and eff ects, and specifi cally 
to investigate the  causes of motions by considering motion as an eff ect of 
some motive cause. As Wallis announced, “I have reckoned that this univer-
sal proposition should be set out at the beginning, since it opens the way by 
which, from purely mathematical speculation, one may move on to physical 
[speculation], or rather that the one is connected to the other” (Mechanica 1, 
prop. 7, Scholium; OM 1 584).

Barrow left  no systematic treatise on mechanics, but his views on the 
subject are easily enough reconstructed from his approach to foundational 
questions in geometry and his remarks on the nature of “mixed mathe-
matics.” He proposed a highly kinematic conception of the origin of geom-
etry in which magnitudes such as lines,  angles, and surfaces are generated 
by motions. Th us, he conceived a line or curve as the path traced by a point 
in motion through space, while a circle is characterized as something pro-
duced by the revolution of a line about one of its endpoints. In his Lectiones 
Geometricae (which  were assembled some years  aft er the Lectiones Mathe-
maticae) he explained that “among the ways of generating magnitudes, the 
primary and chief is that performed by local motion, which all [ others] must 
in some sort suppose,  because without motion nothing can be generated or 
produced” (LG 2; MW 2 159). Th us, in Barrow’s view, the basic concepts of 
geometry include space, time, and motion. Further, when a geometrical object 
such as a curve or surface is defi ned in terms of the motions that produce it, 
the defi nition expresses the true formal cause of the object and allows the 
deduction of necessary properties of the object.
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One notable consequence of this view is that “ because local motion in 
general can scarcely be judged as regards its duration, impetus, intension, 
direction, or any other of its properties,  either in itself or compared with 
another motion, except by the spaces (that is straight or circular lines) that 
it can describe or pass through, it follows that most parts of physics . . .  are 
to be judged part of mathe matics” (LM 2; MW 1 44). Indeed, Barrow con-
cluded that “mathe matics, as it is commonly taken, is so to speak coextended 
and made equal with physics itself” (LM 2; MW 1 44). But, given Barrow’s 
identifi cation of geometry as the mathematical science par excellence, it fol-
lows that the  whole of physics is to be understood geometrically. Th us, as 
Barrow conceived of the issue, the science of mechanics is concerned with 
nothing distinct from the continuous quantities of geometry, and  these are 
to be investigated by attending to the properties of such magnitudes as ex-
pressed in the motions that generate them.

As a result, the space of geometry is identical with the space of physics, and 
we understand the properties of such magnitudes by attending to the motions 
with which they are produced. Signifi cantly, Barrow used the comparison of 
compound motions in the Lectiones Geometricae to eff ect the construction of 
tangents and determination of areas, both of which are essential to any treat-
ment of mechanics. Th e key to his method was to treat a curve as traced by 
“composite motions” of a point, and then to decompose the composite motion 
into two instantaneous rectilinear motions, from which the determination of 
vari ous properties followed fairly naturally. One par tic u lar prob lem is of inter-
est  here, namely the determination of properties of the parabola, and specifi -
cally the parabolic arcs of bodies in  free fall. Speaking of the success of his 
method in relation to this prob lem (which he had succeeded in generalizing), 
Barrow remarked “I believe that not only this but many other propositions of 
Galileo connected to this one and related to the  matter, howsoever they are 
demonstrated, can also be rendered more general or extended to all sorts of 
other curves” (LG 4; MW 2 199). In other words, the study of bodies subject 
to motive forces (i.e., mechanics) is a branch of geometry that proceeds by 
determining the ratios of the component motions arising from such forces.

If Barrow himself did not leave a systematic treatise on mechanics, it is 
arguable that his most successful student did. Th at student is, of course, 
Newton, and his Principia is developed in precisely the style that Barrow 
held to be necessary for any proper study of the physics of moving bodies. 
Rather than expressing his results in terms of algebraic equations (in the 
style of Wallis), Newton constructed ratios and proportions derived from a 
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consideration of the motions of point masses and their trajectories that arise 
from the application of forces, all the while avoiding anything that might 
seem overly algebraic or disconnected from the consideration of continuous 
magnitudes in physical space.15

conclusion

If the account I have been developing is anywhere near the truth, we should 
read the history of seventeenth- century physics against the background of 
disputes over the nature of ratios. Th e two traditions I have identifi ed, 
namely the relational and numerical accounts of ratios and proportions, are 
associated with two diff  er ent ways of constructing the mathematical lan-
guage to be used in investigating the properties of bodies, and more specifi -
cally their mechanical properties. Th e numerical theory lent itself to a highly 
algebraic treatment of mechanics in Wallis’s Mechanica, and was further 
developed by Leibniz and physicists in the Leibnizian tradition. In contrast, 
the relational doctrine of ratios was tied to a much more geometric treat-
ment of mechanics that avoided the apparatus of algebra in  favor of the more 
traditional language of ratios and proportions. It is an odd irony of history 
that what is  today taught as Newtonian mechanics uses the conceptual and 
mathematical apparatus of algebra and the associated notion of real- valued 
functions, which belong to a tradition that neither Barrow nor Newton 
would recognize as appropriate for expressing the fundamental princi ples of 
mechanics. How that came to pass is, however, a  matter for another day.

abbreviations

LG Lectiones Geometricae
lm Lectiones Mathematicae
MU Mathesis Universalis
mw Barrow, I. 1860. Th e Mathematical Works
om Wallis, J. 1693–99. Opera Mathematica

notes

 1. Galilei 1890–1909, 6:232.
 2. Machamer (1998, 65) notes that “Galileo used a comparative, rela-
tivized geometry of ratios as the language of proof and mechanics, which 
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was the language in which the book of nature was written. Th is is very diff  er-
ent from what  will follow in the eigh teenth  century and from the way we 
think of science  today.”
 3. See Guicciardini (1999) on the mathe matics  behind Newton’s formu-
lation of his mechanics and the debates it engendered among his eighteenth- 
century interpreters.
 4. On the concept of a mathesis universalis, its origins, and its role in 
seventeenth- century thought, see Crappuli (1969) and Rabouin (2009).
 5. My references to the Euclidean Ele ments are to Euclid ([1925] 1956), 
in the translation of Heath. References are given in the text to book number 
and defi nition or proposition number.
 6. See Palmieri (2001) on vari ous attempts to rework the classical the-
ory of ratios, notably  those by Galileo and Christopher Clavius.
 7. See Whiteside (1960, section 2) on the development of a broader al-
gebraic conception of algebraic number in the seventeenth  century, as well 
as Klein (1968).
 8. See Heath’s introductory note to book 6 of the Ele ments (Euclid 
[1925] 1956, 2:189–90) for a summary of the evidence for regarding the def-
inition as an interpolation.
 9. Th is remark appears in the twentieth of Barrow’s Lectiones Mathe-
maticae. Henceforth, I  will give citations to Barrow parenthetically in the 
text, using the abbreviations LM and LG for his Lectiones Mathematicae 
and Lectiones Geometricae, with a reference to the relevant lecture number. 
I also supply page and volume references to Barrow’s Mathematical Works 
(Barrow 1860).
 10. Th e medieval history of the defi nition and its role in seventeenth- 
century mathe matics is studied in Sylla (1984).
 11. My references to the Mathesis Universalis are given parenthetically 
in the text, using the abbreviation MU and the relevant chapter number. I 
add a parallel citation to Wallis’s Opera Mathematica (Wallis 1693–99). Ref-
erences to Wallis’s Mechanica are to chapter and defi nition or proposition 
number, with a parallel citation to OM.
 12. I contrast algebraic and geometric foundationalism in seventeenth- 
century philosophy of mathe matics in Jesseph (2010).
 13. See Mahoney (1990) on Barrow’s mathe matics and its odd mixture 
of innovation and methodological conservatism.
 14. Barrow denied that the causality characteristic of mathe matics 
could be construed as effi  cient or fi nal causality. Th is is  because “the con-
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nection (at least such as can be understood by us) of an external cause (for 
instance, of an effi  cient cause) with its eff ect cannot be such that, the cause 
having been posited, the eff ect must necessarily be granted; nor from a pos-
ited eff ect may some determinate cause, strictly speaking, be shown” (LM 6; 
MW 1 91–92). Th is view is a consequence of Barrow’s theological volun-
tarism, which requires that in the case of effi  cient causality the connection 
between a cause and its eff ect “depend upon the most  free  will and omnipo-
tence of Almighty God, who at his plea sure can prevent the infl ux and effi  -
cacy of any [effi  cient] cause” (LM 6; MW 1 92). For more on the connection 
between Barrow’s voluntarism, his nominalism, and his approach to mathe-
matics, see Malet (1997) and Sepkowski (2005).
 15. See Guicciardini (2009, chapter 13, “Geometry and Mechanics”) for 
details on Newton’s account of the relationship between geometry and 
mechanics.
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Hidden amid the standard tales of rollicking adulterers 
and vigorous cheats of Celio Malaspina’s Two Hundred Novellas, published 
in 1609, is the story of a boorish Venetian pigment grinder and his tireless 
tormentors, a petty dealer in brass and a die cutter connected with the mint. 
 Th ere is neither philandering nor fl eecing  here: the pigment grinder has 
nothing but a modest shop of “diff  er ent sorts of colors, chalks and miner-
als,” an aging  mother, an excess of superstition, and a clear defi cit of com-
mon sense. Much of this story has to do with the pigment grinder’s eff orts 
to avoid the die cutter, as he is convinced that the latter, a gift ed sketch art-
ist, is not only interested in collecting an unpaid debt, but has also been 
ordered to depict the twelve most insane men in the city. Th e brass dealer 
counsels the pigment grinder that in the interest of avoiding such portrai-
ture, he should have himself shaved and even mutilated by the local barber, 
with the result that the dupe is initially unrecognizable even to his own 
 mother. Startled, fi  nally, by the die cutter’s unexpected appearance in his 
shop and panicked by the emergent drawing, the pigment grinder plasters 
his  whole head with printer’s ink, grimaces to disguise himself further, and 
bellows, “Now just try to sketch me!” (Malaspina 1609, 1:143–45v).1

At stake in this story, clearly, is the social and professional identity of the 
pigment grinder, a fi gure so misguided in his aff ections that he asks his 
antagonist the brass merchant to be “like a  father” to him, so abject in his 
quotidian activities, and so prone to “rushing barefoot in the rain from home 
to the shop, fi lthy, his hands, face, and smock smeared with colors,” that 
he might easily be taken as a madman. Th e most disconcerting episode of 
the entire story— the brass merchant’s suggestion that the barber “engrave” 
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the pigment grinder as he likes—is the prelude to the fi rst of several disfi g-
urements (Malaspina 1609, 2:144r– v). Th at the die cutter is a man whose 
business is to make money and whose special talent is the ability to sketch 
vivid portraits in chiaroscuro further suggests an asymmetrical division 
of artistic  labor, skilled disegno and craft y design being the province of the 
coiner, and color, for what  little it is worth, the concern of the impoverished 
pigment grinder. Given Malaspina’s friendship with the prominent sculptor 
Leone Leoni, this aspect of the story might also be read as a narrative variant 
on the more ritualized contestations of the aesthetic merits of canvas paint-
ing and the low relief carving characteristic of coins and medals; rather than 
being judged by polished end products and presented by eloquent defenders, 
each art is reduced to the materials needed for its initial stages, and defi ned 
by the inarticulate remarks and comic gestures in which the protagonists 
specialize (on Malaspina, see Ghirlanda 1960). And competing notions of 
naturalness are clearly a focus  here as well, for while the primitive lifestyle, 
earthy products, and gullibility of the pigment grinder make him the em-
bodiment of a naturale or simpleton, the craft y die cutter is renowned for his 
ritratti naturali or “life- like portraits” of the alleged madmen of Venice.

But it is the opening incident in this series of ruses that is most revela-
tory, as it captures something of my concern in this chapter, the vexed re-
lationship of color and number in the early modern period, surely among 
the most problematic eff orts to mathematize nature. Having encouraged 
the pigment grinder to close up shop and to hide at home in order to avoid the 
prowling coiner, the brass merchant decides to complicate his victim’s life 
by altering the chalked numbers on the vari ous wooden shutters covering 
the win dows of the bottega. Perplexed and then maddened by the mismatch 
between shutter and win dow, the pigment grinder proves incapable of fi t-
ting the appropriate cover to each aperture, and he strug gles with the task 
from the moment nearby church bells ring ten  o’clock at night  until they 
sound the Angelus at dawn (Malaspina 1609, 1:143v–144). Evidently unable 
to distinguish the openings on the basis of size, position, and shape, he re-
lies on the arbitrary index provided by numbers.

It is not that the ruse provides the occasion for theft — there is  little 
enough in the pigment grinder’s shop, and nothing that interests the amused 
onlookers— but rather that the episode itself exposes a crucial concern of 
early modern natu ral phi los o phers and artists, the shift ing and oft en unin-
tuitive ways in which numbers  were connected with colors. In the spectacle 
of the pigment grinder’s rage, the numbers with which he has structured his 
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environment appear meaningless and arbitrary to all observers, and, what-
ever their original logic, are of unrecoverable signifi cance to the victim him-
self. Th e numbers, in short, are talismanic, and useful only insofar as they 
serve to match what are for the pigment grinder other wise unrecognizable 
architectural ele ments. Th ey embody the twin tendencies of a man defi ned 
by both credulity and superstition.

Malaspina’s anecdote can be read, as I  will argue  here, as a vernacular 
response to the celebrated classical story through which number came to be 
linked fi rst to sound and subsequently to color. Like Malaspina’s novella, 
this tale, other wise radically diff  er ent in tenor and in import, emerges in the 
workplace. In the version told by Boethius in late Antiquity in his Funda-
mentals of  Music (1989) and repeated by countless followers, the study of 
harmony emerged when the ancient phi los o pher Pythagoras was inspired by 
the single consonance emitted by fi ve hammers pounding molten metal in a 
forge.  Aft er initial investigations of the  matter, Pythagoras judged one of 
 those implements inharmonious and set it aside; weighing the other four, he 
found that they diff ered in a ratio of 12:9:8:6. Th e vari ous relationships be-
tween any pair of  these weights, he noted, could thus be transcribed by the 
fi rst four natu ral numbers.

Such intervals, Pythagoras further argued, could likewise be translated 
to  those between tones on a monochord. When a string is divided in half 
and plucked, the diapason that sounds is one octave higher in pitch than 
that emitted by the open string. Th e diapente, produced when two of three 
equally divided sections are played, is one- fi ft h higher than the open string; 
the diatessaron, emerging when three of four sections of the string are 
struck, is one- fourth higher. In the Pythagorean view, 9:8 or the interval be-
tween the fourth and the fi ft h, a  whole tone, was itself dissonant, though the 
basis of harmony.

 Th ese same relations, Pythagoras added, held true for weights suspended 
on cords. Th us the diff erence between a cord bearing twelve pounds and one 
bearing six pounds would be an octave or diapason; between twelve and 
eight pounds a fi ft h or diapente; between eight and six pounds a fourth or 
diatessaron. Th e experimentation extended,  later writers added, to contain-
ers fi lled with 12, 9, 8, and 6 units of  water, to pipes of 12, 9, 8, and 6 units of 
length, and to bells of 12, 9, 8, and 6 units of volume, and the same conso-
nances always emerged (Boethius 1989).2

 Th ese proportions—2:1, 3:2, 4:3, and 9:8— are  those that  matter in this 
chapter: they  were associated, though in somewhat unstable fashion, with 
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the range of hues  running from white to black, especially in early formula-
tions of color theory.3 Once removed from their original musical context, they 
functioned as terms designating proportions of light to dark, or white to 
black; entirely remote from paint erly practice, they underwent further modi-
fi cations when fi tted to spatial pre sen ta tions of the spectrum.  Until the emer-
gence of the clear distinction between primary and secondary colors, and the 
 simple combinations they off ered, the proportions Pythagoras discovered in 
the forge formed the basis for many philosophical accounts of color.

“more colors than just black and white”

Color is clearly a disastrous business for the pigment grinder of Two Hun-
dred Novellas, whose workplace, literally structured by meaningless num-
bers, yields him very  little in the way of profi t. Apart from the conventional 
Venetian carta azzurra on which the die caster sketches his incriminating 
chiaroscuro portraits, other than the deep black of the printer’s ink with 
which the pigment grinder covers himself, and the disappearing whites of 
his eyes as he takes on this disguise, no hues are mentioned in the story 
(Malaspina 1609, 1:144, 145).  Th ere is the strong suggestion, moreover, in the 
equivalence of “fi lth” with the vari ous colors smeared on his hands, face, and 
smock, of an impoverished, grimy, and monochromatic world. Th is envi-
ronment is the parodic legacy of the early modern eff orts to connect color 
with the Pythagorean ratios.

To summarize the prob lem with which natu ral phi los o phers of the six-
teenth and seventeenth  centuries  were confronted, in On Sense and Sensible 
Objects Aristotle had sought to explain the origin of the “intermediate” or 
mixed colors yellow, red, purple, green, and blue by arguing that they arose 
through vari ous admixtures of white and black, or of light and darkness.4 
Th is notion, almost wholly incomprehensible to modern readers, would fi nd 
its most persuasive instance in the reddish glow of dark clouds struck by 
sunlight, and allusions to this eff ect occur regularly in sixteenth- century 
discussions of color. Aristotle had further argued that only “exactly numer-
ical” ratios of white and black would yield attractive hues. While he pre-
ferred the hypothesis that all combinations involved an intermingling of 
white and black so thorough as to transform  those hues, he acknowledged 
that other thinkers had  imagined  either a mixing of fi ne but essentially un-
altered black and white particles, or a layering of the two substances. Signifi -
cantly,  these less probable alternatives  were distinguished by their kinship 



182 eileen reeves

with painting, while that favored by Aristotle could only be explained by 
analogy with musical ratios.5

It is thus pos si ble to believe that  there are more colors than just white and 
black, and that their number is due to the proportion of their components; for 
 these may be grouped in the ratio of three to two, or three to four, or in other 
numerical ratios, or they may be in no expressible ratio, but in an incommen-
surable relation of excess and defect, so that  these colors are determined like 
musical intervals. For on this view the colors that depend on  simple ratios, like 
the concords in  music, are regarded as the most attractive, e.g., purple and red 
and a few  others like them— few for the same reason that the concords are 
few— while the other colors are  those that have no numerical ratios. (Aristotle 
1957, 233)

Th e Bolognese physician and phi los o pher Mainetto Mainetti off ered 
one of the most infl uential commentaries on this Aristotelian text in 1555, 
tacitly discarding Aristotle’s own order— white, yellow, red, violet, green, 
blue, black—so as to privilege the Pythagorean ratios. He began with the 
observation that in the Aristotelian Problemata the color green was singled 
out for its restorative qualities, precisely  because it was between the ex-
treme points of white and black, the excesses of which disturbed the viewer’s 
eyes. “Two colors are between white and green,” Mainetti wrote in account-
ing for green’s attractive nature, “yellow is beyond white and blue before 
green. Th ey arise in rational proportions, as if a diapason and a diapente. 
Yellow is indeed in diapason, that is, two to one, since two units of light or 
brightness and one of earthy darkness generate yellow. Blue is rather in dia-
pente, which is two to three, since blue is born of three units of brightness, 
and two of opacity” (Mainetti 1555, 80). Mainetti added that  matters  were 
similar for purple and red, already identifi ed by Aristotle in On Sense and 
Sensible Objects as especially pleasing to viewers. As an intermediate hue 
between green and black, red could be compared to the diapason,  because it 
was composed of two units of opacity and one of brightness; purple, having 
three parts opacity to two of light, was like the diapente.

Returning to the argument  later in his commentary, Mainetti further 
compared yellow to the diapason and brown to the diapente.  Here, however, 
the crucial ratios involved white and black, rather than light and dark: 
yellow contained two mea sures of white to one of black; brown, three of 
black to two of white (152). In both accounts, though, the diapason and 
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diapente  were associated with specifi c ratios; the diatessaron, judged insuf-
fi ciently pleasing, had no place in this system.

Mainetti’s formulation appears to have been  adopted in a somewhat con-
densed version by the Florentine physician Guido Guidi, who likewise iden-
tifi ed green as equally composed of clarity and opacity, blue as embodying 
the ratio 3:2, red as 2:1, and purple as 2:3. Avoiding the terms “diapente” and 
“diapason,” Guidi (1626) merely noted that “where certain proportions are 
maintained in admixtures, the colors  will be pleasing, as in the harmony of 
voices, but where such ratios are not preserved, they  will be unappealing” 
(162). Likely written in the 1560s but unpublished for de cades, this sort of 
discussion would prove durable. Its most striking feature is its distance from 
artistic practice: though he was the maternal grand son of Domenico Ghir-
landaio, and associated with the Mannerist painter Francesco de’ Rossi (“il 
Salviati”), in this instance Guidi deferred to the traditional and exclusively 
theoretical explanation of color.6

 Others who followed Mainetti’s lead sometimes sought to mute his overt 
reliance on musical intervals, and chose simply to refer to the mathematical 
ratios of the Pythagorean traditions. Th us, for instance, in a discussion of 
1581, the Fribourg humanist Sébastien Werro presented black and white as 
the sole  simple colors, and red, rather than Mainetti’s green, as the product 
of equal proportions of  these two hues. Pink had a 3:2 ratio of white to black; 
blue, conversely, a 3:2 ratio of black to white. Saff ron had a 2:1 ratio of white 
to black, while scarlet had the same ratio of black to white. Th e ratio of black 
to white in green was 5:4— eff ectively, the ditone or major third— but Werro 
did not draw on terms borrowed from the discourse of harmony. Yellow and 
brown, fi  nally, involved ratios of 2:1, white to red and red to white, respec-
tively, which meant that their proportions of white to black  were 6:5 and 5:6, 
that of the semi- ditone or minor third. Th is musical interval likewise went 
unnamed in Werro’s account (1581, 124–26).

as paint ers do

Such discussions, what ever proportions they involved, diff ered entirely from 
the  actual practices of early modern paint ers. While artists relied on a vari-
ety of substances to obtain green and purple pigments, techniques for blend-
ing a saff ron- based lake and azurite, or mashed iris petals and Naples yellow, 
or orpiment and indigo, or saff ron and indigo, or for layering a red lake over 
azurite had been known for well more than a  century (Ball 2001; Salazaro 
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1877, 23–24, 25–26; Merrifi eld 1849, 2:420–25, 584–87, 610–11; Hall 1992, 
15–16, 32).7 Dyers in Mainetti’s day could combine indigo and giallo santo, 
a yellow lake, to obtain green (Ruscelli 1557, 105v–106). To judge from early 
modern colored woodcuts, by the mid- sixteenth  century several diff  er ent 
shades of orange  were produced through combinations of red lead or ver-
million with ochre or lead- tin yellow (Dackerman 2003, 57, 169, 206, 236, 
274, 276, 277). Th is is not to say that such  recipes  were always reliable: the 
ambiguity of color terms, the imprecision of mea sure ments and techniques, 
the variability caused by locale and season, and the tendency of numerous 
substances to deteriorate over time, or in contact with other substances, 
guaranteed unpredictable results. But the increasing incidence of concoc-
tions favoring mixtures of blue and yellow, or of red and blue, or of red and 
yellow, even or rather especially in the case of false combinations, suggests 
a growing familiarity with knowledge that would soon be codifi ed as a sys-
tem of primary and secondary colors.8

We might regard the monochrome world of Malaspina’s pigment grinder 
as a symptom of the confused account of color off ered by natu ral phi los o-
phers in this period. All the chalk, minerals, and pigments on his face, 
hands, and smock seem reduced to a single “fi lthy” hue; the protagonist and 
his  enemy the die cutter both produce, in rather diff  er ent ways,  faces rendered 
only in black and white; a quick chiaroscuro sketch on carta azzurra is identi-
fi ed as an extraordinarily lifelike portrait, as if its absent and aberrant colors 
 were of no  great importance.  Th ese narrative details signal that the elegantly 
calibrated admixtures of black and white, or light and dark, would result 
solely in vari ous shades of gray; but it is the relationship of such discussions 
to the brass vendor’s initial trick that merits special consideration.

If we compare, for example, Mainetti’s explanation of color with Wer-
ro’s subsequent elaboration, we can see that both systems can be read as lin-
ear spectrums  running from light to dark, but that the transition from the 
original ratios to  whole numbers produces peculiar features. Th us while 
Mainetti’s spectrum progresses from white through yellow, blue, green, pur-
ple, red, and black,  were we to transcribe the harmonic ratios of light to 
dark as integers on a 100- point scale, the arrangement would suggest some-
thing other than a uniform passage from one hue to the next. In such a con-
fi guration, white, of course would be rendered as 100, yellow as 66, blue as 
60, green as 50, purple as 40, red as 33, and black as 0. Werro’s slightly more 
elaborate version yields a diff  er ent chromatic ordering and more pronounced 
clustering; reduced to the same scale and restricted to integers, it runs from 
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white (100) to saff ron (66) to pink (60) to yellow (54) to red (50) to brown 
(45) to green (44) to blue (40) to scarlet (33) and fi  nally to black (0).

It is diffi  cult to fi nd a more apposite image of  these reductions of color 
to number than that evoked by the brass vendor’s fi rst trick, where the 
pigment grinder’s diffi  culties in closing his shop involved his inability to 
recognize, without the aid off ered by numbers, the shutter designed for 
each aperture. Just as Werro’s spectrum associates individual colors with 
specifi c numerical values distributed in nonuniform fashion and in a man-
ner that correlates only weakly with hue, so the vari ous win dows of the 
shop, identifi ed by a unique number and sometimes poorly diff erentiated in 
size, shape, and position, frame the pigments and display them as disjunct 
ele ments in a seemingly arbitrary sequence.

Th e revelation of the strange role numbers play for the pigment grinder 
comes from the brass merchant, who in addition to altering “a two to a six, 
and a six to a four, and so forth,” discreetly marks each shutter “at the foot 
with a sign known to himself,” a signature of sorts, in order eventually to 
close the place up (Malaspina 1609, 1:143v). While the episode implies more 
the trickster’s skepticism concerning the connection of number with color 
than a systematic eff ort to explain the phenomena in other terms, his pro-
fessional identity is telling. In Malaspina’s coy phrase, this ruffi  an “plied his 
trade by selling vari ous brass objects in the balance- makers’ street” (1609, 
1:143). His obvious propensity for deception, Malaspina’s own excellent cre-
dentials as an inveterate forger, and the widespread practice of tampering 
with mercantile mea sures suggest that  these wares  were fraudulent weights, 
rather than the legitimate metal components of balances and steelyards; as 
Francis Bacon had observed in 1601, “this fault of using false weights and 
mea sures is grown so intolerable and common that if you would build 
churches, you  shall not need for battlements and bells other  things than false 
weights of lead and brass.”9 Th e more immediate point may be, however, the 
brass merchant’s implicit familiarity with metrology. Two details from his 
fi nal trick— his perforation of the pail within which the pigment grinder 
twice pours wine purchased by volume, only to have it twice trickle away, 
unnoticed, as he carries it through the streets, and the description of the 
dupe’s rage as “unmeasured”— confi rm the expected opposition between 
one who perceives weight, and one who does not (1609, 1:145r– v).

It was within the context of experiments with mea sures and weights that 
the increasingly elaborate substructure of Pythagorean proportions became 
most vulnerable to criticism. Skeptics included the Venetian mathematician 
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and natu ral phi los o pher Giovanni Battista Benedetti, who explained conso-
nance and dissonance in 1585 not by the ratios and the string lengths of the 
monochord, but by the rates of the strings’ vibration, the more pleasing 
sounds being the result of notes concurring with frequency, and the less 
agreeable ones the product of interrupted or infrequent concurrences. 
Writing in 1589, Vincenzo Galilei turned to the story of the suspended 
weights, showing that the ratio needed to be 4:1, not 2:1, to produce an oc-
tave or diapason; 9:4, not 3:2, for a fi ft h or diapente; 16:9, not 4:3, for a fourth 
or diatessaron. Th is adjustment of the proportions between weights was not 
merely the observation that the numbers needed to be squared, but more 
impor tant, part of a sustained polemic against the prominent composer and 
 music theorist Gioseff o Zarlino’s overreliance on Pythagorean ratios to ex-
plain all natu ral phenomena (see Drake 1999; Palisca 2006, 150–51; Peter-
son, 2011, 170–71; Heller- Roazen 2011, 67–68; Mancosu 2006, 598–604).10

Both Zarlino’s enthusiastic elaboration of Pythagorean ratios and the 
sort of empirical knowledge advocated by Benedetti and Galilei had re-
newed interest in the association of color with number. Given the cultural 
prominence of Venetian painting, the presence of a well- established textile 
industry in that city, and the strong interest in color perception among 
early modern natu ral phi los o phers and physicians nearby at the University 
of Padua, it is not surprising that the setting for  these discussions was Ven-
ice.11 Educated in philosophy at Padua before entering a  career as a diplomat 
and a cleric, Filippo Mocenigo addressed the question of color in his Univer-
sal Institutions for the Perfection of Man of 1581 (on Mocenigo, see Bonora 
2011). Such discussion occurred not in his examination of vision, however, 
where color is hardly mentioned, but rather as an appendage to his pre sen-
ta tion of sound and voice.

Mocenigo was strongly infl uenced by the work of Zarlino. Given that the 
two men  were both associated with the Venetian Acad emy, and that Zarlino 
had dedicated another work to Mocenigo’s cousin, the Doge of Venice, this 
engagement is not surprising; the fact that Universal Institutions for the Per-
fection of Man emerged from the press at the moment of Galilei’s quicken-
ing confl ict with Zarlino can only have increased interest in the  matter.12 Of 
par tic u lar relevance  here is Zarlino’s revision of the Pythagorean system, 
which made the fi rst six, rather than four, integers the basis of harmony. In 
addition to the diapason, diapente, and diatessaron, therefore, musicians 
might draw upon the more modern consonances of the ditone—5:4 or the 
major third— and the semi- ditone—6:5 or the minor third.13 As for the tone 
or 9:8, Zarlino had interpreted the story of Pythagoras and the hammers to 
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mean that this basic unit enjoyed an intermediate status of something nei-
ther concordant nor discordant (Zarlino 1558, 61).14

Mocenigo (1581) drew on  these innovations to describe the spectrum in 
systematic fashion. “Th e outermost colors, which in their mutual relation-
ship recall the diapason, are white and black,” he began. “Th e three inter-
mediate ones, which are in fact  simple, but bordered by white and black, are 
red, which is closer to black than to white, yellow or gold, which is nearer to 
white, and hyacinth.” Th is last color, a bright violet blue, he stated, was 
“therefore the midpoint, such that with res pect to black, it can be compared 
to the diapente, and with res pect to white, the diatessaron. With res pect to 
red, it is like the semi- ditone, and with res pect to yellow, the ditone. In the 
same fashion, yellow with res pect to red resembles the diapente, while red 
with res pect to black is like the ditone” (305).

Unlike Mainetti and successors such as Werro, Mocenigo used the har-
monic proportions to articulate the spatial relationships of  these colors to 
each other, rather than to indicate notional mea sures of dark and light, or 
black and white, in the presumed compositions. Th e layout of Mocenigo’s 
system of primary colors can readily be mapped onto Zarlino’s discussion 
of the version of the diatonic scale he favored (Zarlino 1558, 120–22).15

Figure 1. Gioseffo Zarlino, Istitutioni Harmoniche (Venice: 1558), 122.
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A small diff erence lies in the distance in this theoretical confi guration 
between yellow and white, shown  here as a major semitone, a unit Zarlino 
(1558) had laboriously described as a harmonious fraction of the diapente 
(121–22). Mocenigo (1581) had proposed instead that  there would “also be 
the proportion of a [ whole] tone, which is neither consonant nor dissonant,” 
between  these hues. He had further stipulated that the proportions between 
red and white, and between black and yellow would be dissonant (305).

In the most impor tant contrast to Mainetti and other Aristotelian 
pre de ces sors, Mocenigo (1581) insisted on the proximity of his system to 
 actual artistic practices, privileging fi rst the primary nature of three colors: 
“It is clear that paint ers can make neither red, nor hyacinth, nor yellow— 
any more than they can make white or black— from mixtures,  unless a new 
concoction [that is, alteration by heat] is involved. However, all other hues 
can be produced from the admixture of any of  these  simple colors” (305). 
Th e schematic ordering of  these secondary colors that followed would have 
impressed at least some of Mocenigo’s initial audience less with its inaccu-
racy than with its apparent distance from the model of On Sense and Sen-
sible Objects, and with its resemblance to lower genres such as the paint er’s 
manual and the book of secrets. “Blue arises from hyacinth and white,” Mo-
cenigo explained, “green from yellow to which some black has been added; 
crimson from blue and black; brown from black and white; ash- gray from 
white to which some black has been added” (ibid.).16

now printed for the fi rst time

Guido Antonio Scarmiglioni and Anselm de Boodt, two writers educated at 
the medical school of Padua in the late 1580s and eventual residents of Vi-
enna and Prague, respectively, also off ered modifi ed versions of Mocenigo’s 
system.17 Scarmiglioni’s Two Books on Color appeared only in 1601. Its 
breathless subtitle, Now Printed for the First Time, and its preface both por-
tray it as a text composed years earlier, and its numerous references to other 
works include nothing published  aft er 1590. Like de Boodt’s eventual publi-
cation of 1609, it off ered extensive reference to the practice of paint ers and 
dyers: Scarmiglioni gestured several times to vari ous combinations of blue 
and yellow and of blue and red used to produce green and purple. Unlike 
the more pragmatic guide provided by de Boodt’s Natu ral History of Gems 
and Precious Stones, however, Two Books on Color also drew upon the fl ex-
ible resources of the musical argument.
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In reviewing the notion that paint ers  were unable to make the fi ve so- 
called primaries “through mixtures,  unless heating  were involved,” and that 
“by mingling  these hues they easily obtain  others,” Scarmiglioni (1601, 112) 
objected fi rst of all to the exclusion of green from this fi rst rank of colors. 
Th e fact that one might observe, “as a quotidian experience,” paint ers con-
cocting this color from admixtures of yellow and blue did not persuade 
Scarmiglioni of its secondary status, but did justify its central place, equi-
distant from the two hues of which it was composed, in his array of seven 
primaries (120, 170).  Matters  were evidently more complicated for purple, 
whose confection he knew to involve “a small amount of red added to blue,” 
for he located it between green and blue (117, 119, 169). Orange seems to have 
fi gured only briefl y, as a substance produced when minium was moistened 
with  water; it had no status as a separate hue (120). Th ough Scarmiglioni 
 adopted the terms of Zarlino’s harmonic intervals, comparing the relation-
ship of white to black to the diapason, describing the position of green with 
res pect to  these two endpoints by referring to the diatessaron and the dia-
pente, and defi ning the distance between white and yellow by a tone “neither 
consonant nor discordant,” his spectrum does not conform to the diatonic 
scale as well as Mocenigo’s does (Scarmiglioni 1601, 148, 174, 180, 187, 199). 
It is not surprising that he included no illustration of the arrangement.

De Boodt’s Natu ral History of Gems and Precious Stones likewise emerged 
from the Paduan context, and also suff ered a signifi cant delay in publication. 
It mentioned the notion of primary colors only twice, and merely in passing, 
as if citing a truism rather than a point of contention. In his preface de Boodt 
(1609) stated that “from the colors white, black, red, blue, and yellow, paint ers 
can make a variety of hues,” and subsequently he noted that “the principal 
colors, and  those which are not made from the mixtures of  others, are white, 
black, blue, yellow, red, and minium, which is made from calcined lead” (8, 
25). In adding this last color— a bright orange pigment prized by painters—
de Boodt provided a corrective to Scarmiglioni’s recommendation of a 
 water- based pro cess, and more impor tant, an instance of the use of heat, 
rather than mixing, to produce an unadulterated hue.18

Mocenigo, Scarmiglioni, and de Boodt do not seem to have off ered a 
color system suffi  ciently robust to attract disciples. We might infer that Gal-
ileo Galilei’s claim in May 1610, just  aft er the publication of his Sidereus 
Nuncius, to have already written a short treatise “On Vision and Colors,” 
involved an eff ort, or perhaps merely the intention to make such an eff ort, 
to improve upon an arrangement whose basis was the work of his  father’s 
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 great rival Zarlino.19 Th e discussion of colors written by the prominent phy-
sician Epiphanio Ferdinando, which was published in early 1611 by the press 
from which Galileo’s Sidereus Nuncius had emerged just eight months 
earlier, is notable for its tacit re sis tance to recent innovations. Its chartlike 
format, deployment of terms such as “diapason,” “diapente,” and “diates-
saron,” and ordering of the colors  were nothing but a retreat to the pro-
portional units of dark and light advocated sixty years earlier by Mainetti 
(Ferdinando 1611, 193).20

In  these vari ous eff orts to reformulate and preserve the traditional con-
nection of Pythagorean ratios with colors, we are far indeed from the antics 
of the pigment grinder, the brass merchant, and the die cutter, and yet Mala-
spina captures a striking common denominator. Published in 1609 by the 
same Venetian printing consortium used by Galileo in 1610 and Ferdinando 
in 1611, Two Hundred Novellas begins with a transparent fi ction of anterior-
ity much remarked by its original audience: even as it masquerades as a col-
lection of tales told by speakers gathered in a villa to escape the plague of 
1576, it blithely relates countless celebrated events of much more recent vin-
tage. Malaspina lived in Venice from 1580 to 1591, but what is more crucial 
than the author’s biographical particulars is the way in which his tale of the 
pigment grinder, opening with the formulaic “it is already many years ago,” 
and treating the association of number with color as farce, mimics the 
familiar combination of prior discovery and deferred revelation. Just as Scar-
miglioni and de Boodt alluded to a debate several de cades old, and only 
“being printed for the fi rst time” in 1601 and 1609, and Ferdinando and 
Galileo coupled bygone analyses of color with publications of 1611 or yet to 
come, so the mocking Malaspina presented the tale of the pigment grinder 
as an account of events long predating their moment of disclosure.

yellow, red, and blue

While Malaspina’s gesture to this temporal lag suggests a kind of smug sta-
sis in early modern color theory, a signifi cant development soon followed. 
In 1613 the Jesuit François Aguilon off ered a coherent discussion of the 
paint er’s primaries in his Opticorum libri sex (Six Books on Optics), pub-
lished in Antwerp and accompanied by engravings designed by Peter Paul 
Rubens.21 A crucial feature of vis i ble phenomena, color emerges early as a 
topic in this seven- hundred- page treatise. Despite his ultimate rejection of 
the Aristotelian explanation of color, Aguilon invoked several of the argu-
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ments of On Sense and Sensible Objects, noting, for instance, that chromatic 
mixtures might occur through a layering of a translucent hue over a darker 
one, or as an optical impression of minute spots seen from a distance or, fi -
nally, as a genuine admixture of two diff  er ent substances (Aguilon 1613, 39). 
He also distanced his discussion from the organic color changes addressed 
in pseudo- Aristotle’s On Colors, and warned his readers that “we are not 
dealing  here with concrete colors such as minium, dark purple, lake, cinna-
bar, indigo, ochre, orpiment, lead white, and the other  things with which 
paint ers cover canvases, but rather with the vis i ble qualities that inhere in 
them” (38).

His system had an elegant simplicity. “Yellow, red, and blue number, 
strictly speaking, as the three intermediate colors,” Aguilon asserted. “Along 
with white and black they form a quintet of primary colors. Moreover, from 
 these intermediate colors just as many secondary colors arise through three 
combinations. Orange is thus made of yellow and red, purple of red and 
blue, and from yellow and blue, fi  nally,  there is green. And from the mix-
ture of all three of  these intermediate colors a certain unpleasant hue is born, 
something livid and lurid, like a cadaver” (40).

Th e fi gure accompanying Aguilon’s explanation is clearly a modifi ed 
version of that traditionally deployed in discussions of consonance and dis-
sonance. Aguilon wholly abandoned, however, the minute examination of 
vari ous Pythagorean proportions: his system is characterized by symmetry, 
and stripped of terms imported from the discourse of harmony. Th ough he 
never alluded to the eff orts of Mainetti, Werro, Mocenigo, or Scarmiglioni, 
Aguilon elsewhere suggested a certain re sis tance to eff orts such as theirs. 
Th e preface of his work includes a passing condemnation of the obscurity of 
Pythagorean mysteries; more substantively, the discussion of colors is pre-
ceded by the censorship of  those who insisted on commonalities between 
the senses (Aguilon 1613, “Lectori S[alutem”], second unnumbered page). 
“Th at which is perceived through color has only to do with sight; that which 
is discerned through sound, only with hearing; that which is known by 
scent, only with the sense of smell, and so forth,” Aguilon warned (30). Even 
more mistaken than the erroneous comparison of sensible objects, he ar-
gued, was the belief that the diff erence between colors could be explained 
by reference to transparency, opacity, darkness, and shadow (ibid.). Worst 
of all, however, was the assumption that aesthetic judgments  were other 
than  matters of taste and opinion: “for beauty consists in harmonic division, 
which  human reason barely recognizes; ugliness, in a certain obscure 
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asymmetry of lines and qualities” (31). Put diff erently, consonance and dis-
sonance could not be established by arithmetical means, and fi gured not at 
all in a discussion of the relationships between colors.

past anterior

Aguilon’s theory of primary colors was parroted in the specialized ambit of 
the Jesuit thesis two years  later (Felix and Denich 1615, 20). In general, how-
ever, his simultaneous rejection of the Aristotelian explanation and of the 
traditional association of colors with musical intervals seems to have gone 
unnoticed, unacknowledged, or unaccepted by natu ral phi los o phers.22 As if 
in conformity with the pattern of tardy revelation of bygone fi ndings, the 
Florentine physician Guido Guidi’s work, written in the 1560s and based on 
Mainetti’s adaptation of the Pythagorean ratios to color theory, was post-
humously published in 1626; the Venetian physician Valerio Martini’s De 
colore libri duo sua aetate iuvenilia collecti (Two Books on Color Composed 
in His Youth) emerged in 1638, looked back several de cades to discussions 
at the University of Padua and concluded, “based on reason, experiment, 
and the authority of  those who are expert in painting,” that the six princi pal 
colors— white, gray, yellow, orange, blue- green, and black— were produced 
through admixtures of black and white (Martini 1638, 2:2). Without spec-
ifying its relationship to his prior and still unpublished “On Vision and 
Colors,” in his Assayer of 1626 Galileo gestured in passing to his view that 

Figure 2. François Aguilon S. J., Opticorum libri sex (Antwerp: 1613), 40.
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colors, like par tic u lar sounds, tastes, tactile sensations, and odors,  were an 
artifact of the senses, and that ours is a monochrome world confi gured by 
indivisible quanta. In insisting that “a very long time would not be enough 
for me to explain, or rather shade in on paper, what  little I understand of 
 these  matters, and thus I pass over them in silence,” he avoided, to a degree, 
the problematic elaboration of an atomistic doctrine, and reverted to his 
pattern of infi nitely deferred disclosure (Galilei 1967, 6:350).

 Whether  these debates  were of any importance to the true protagonists 
of color mixing, the paint ers of early modernity, is by no means clear. Th us 
far, only a few works such as Peter Paul Rubens’s Juno and Argus (ca. 1611) 
and Nicolas Poussin’s Christ Healing the Blind Man (1650), where sight and 
light are overtly addressed, are considered direct responses to emergent 
color theory as formulated by Aguilon, though one might perhaps add to 
this meager list Guido Reni’s Union of Design and Color (ca. 1620–25) and 
 those self- portraits in which artists deliberately display a restricted palette 
(see Kemp 1990, 30–44). Th at said, it seems entirely pos si ble that the most 
pronounced reactions to Aguilon’s solution do not necessarily inhere in the 
expected genres or arise in conventional thematic treatments. Like Mala-
spina’s narrative response to  those prior attempts to mathematize color 
through Pythagorean ratios, they appear as a cluster of gratuitous details in 
a scenario whose ultimate referent is the original story of the forge.

By way of conclusion, then, I would like to consider the legacy of the 
debate over color in two works by Diego Velázquez, Joseph’s Bloodstained 
Coat Brought to Jacob, and Apollo at the Forge of Vulcan, both completed in 
Rome around 1630 during his fi rst Italian sojourn. I  will argue that this is-
sue is the crucial component of both paintings: the ostensible subjects, bib-
lical and mythological, merely provide the pretexts.  Th ere are a number of 
contextual reasons to suspect that color theory would have been of interest 
to Velázquez in this period. Th e young and ambitious artist’s fi rst journey 
to Italy had been prompted by Rubens’s visit to Madrid in 1628–29; before 
arriving in Rome he had spent a brief period in Venice; his travel through-
out the country was facilitated by the Venetian ambassador to Spain, Alvise 
Mocenigo, cousin to Filippo Mocenigo; and when in Rome he resided in the 
Villa Medici, where Galileo was also staying (see Goldberg 1992, 453–56; 
Palomino 2007, 37–44, 76–86). Th ough  these coincidences likely indicate 
no more than the relatively restricted number of participants in the cultural 
life of early modernity, it is also true that Velázquez acquired at some un-
known point Aguilon’s Six Books on Optics, as well as an unidentifi ed work, 



194 eileen reeves

possibly authored by Vincenzo Galilei, on  music theory (Sánchez Cantón 
1925, 3:389–91).23 Th e best evidence for the importance of the debate over 
color, however, comes from the paintings themselves.

In his 1724 biography of Velázquez, Antonio Palomino (2007, 83–86) 
presented Joseph’s Bloodstained Coat and Apollo at the Forge as companion 
pieces painted without commission but  later off ered to the Spanish king; 
apart from two landscape sketches of the villa where the artist may or may 
not have met Galileo,  these are the only two canvases known to have been 
completed during the stay in Rome.24 While scholars have emphasized their 
shared subject of deception, it must be noted that dishonesty enjoys very dif-
fer ent  handling in the two works. In Joseph’s Bloodstained Coat, the stunned 
patriarch Jacob is deceived by his sons, who use the garment to convince him 
that his youn gest and favorite child has perished. Apollo at the Forge is like-
wise a tawdry domestic drama in which Apollo tells Vulcan the unhappy 
truth about the infi delity of his consort Venus.

What the paintings do share is a set of formal resemblances and sus-
tained attention to the medium itself.25 Th at Joseph’s Bloodstained Coat has 
something to do with color is not surprising, given that the tunica polymita 

Figure 3. Joseph’s Bloodstained Coat, 1630 (oil on canvas), Diego Rodriguez de Silva y Velázquez 
(1599–1660). Monasterio de El Escorial, El Escorial, Spain. Bridgeman Images.
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in question was generally understood in the early modern period to have 
been woven “of diverse colors” (see Beyerlinck 1617, 216; de Mariana 1620, 
28; 1617, 385; Cornelius a Lapide 1616, 258). Considering that this splendid 
garment was the catalyst of Joseph’s quarrel with his  brothers, and that it 
is the sole prop in their ruse, the small white item shown to the patriarch is 
much less impressive than one would expect. Its signifi cance lies in this 
economy: fl ecked with faint red and yellow stains, and shadowed with blue 
and black, the coat recapitulates the emergent theory of primary colors. As 
if to reinforce the point, Velázquez distributed the primaries about the black 
and white tunics, the brightly lit, strongly modeled triad of blue, red, and 
yellow cloths on the left  fi nding a subdued mirror image on the right. While 
white and black are clearly crucial to the diff  er ent tonalities of the left  and 
right sides of the canvas, their new status as something other than the source 
of all colors is indicated in two diff  er ent ways. Th e rich gray cloak over the 
patriarch’s robe, neatly posed against the juncture of light and dark walls, is 
the only hue that could be said to derive from  those erstwhile primaries. And 
the black robe of the  brother who bears the tunic “of diverse colors” is nothing 

Figure 4. Apollo at the Forge, 1630 (oil on canvas), Diego Rodriguez de Silva y Velázquez (1599–1660). 
Prado, Madrid, Spain. Bridgeman Images.
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other than the dark ground of the canvas itself, at once a repre sen ta tion, ap-
propriately somber, of the liar’s garment, and an entirely unworked section 
of the painting (see Brown and Garrido 1998, 40–45; Garrido 1992, 230–31).

Joseph’s Bloodstained Coat incorporates a series of last eff orts:  aft er this 
painting, Velázquez never again used a dark ground, he abandoned the 
coarsely woven canvas for a fi ner fabric, and the brilliant Naples yellow next 
to the tunic “of diverse colors” does not reappear in  later works (Brown and 
Garrido 1998, 43, 45). While any of  these three developmental steps is plau-
sibly associated with his artistic apprenticeship in Rome, they also appear 
crucial to Velázquez’s insistence on the very nature of his medium in this 
painting. Th is emphasis reappears, albeit in a slightly diff  er ent register, in the 
so- called companion piece of Apollo at the Forge.  Here for the fi rst time Ve-
lázquez prepared a luminous ground of an opaque lead white mixture. Th is 
modifi cation, in tandem with the much denser weave of the canvas, con-
tributes to the slightly more fi nished and even quality of this second work.

Despite  these diff erences, the paintings share several features; both com-
positions include the device of the landscape in the upper left  quadrant, and 
both involve a dramatic moment in which a group of fi ve men confront a 
sixth character. While the focal point of Joseph’s Bloodstained Coat was nec-
essarily that pallid garment “of many colors,”  there is no such object in Apollo 
at the Forge. Rather than the double series of block- like primary colors, more-
over, this work featured the secondary hues of orange, green, and purple, 
though only the fi rst of  these retains its initial intensity. Th e green of Apollo’s 
crown, made of admixtures of azurite, iron oxide, and lead white, was repro-
duced, with varied tonality, in the garments of Vulcan and his centrally 
placed companions, while the clothing of the man working on the armor at 
the far right, originally a muted violet, was composed of lead white, iron ox-
ide, vermilion, and a pale blue pigment, perhaps smalt, notoriously prone to 
discoloration (Brown and Garrido 1998, 46–56; Garrido 1992, 243).26 Inevita-
bly, the placement of  these three secondary colors replicates the arrangement 
in Aguilon’s diagram, a central arc of green falling between the orange and 
violet extremes. Except for the bluish sky beyond the forge, the primary col-
ors do not appear in this painting, though black, white, and gray fi gure 
naturally in the metal objects produced by Vulcan and his assistants.

While the bright orange of both the metal on the anvil and of the fi re 
recalls the occasional pre sen ta tion of this color, when derived from calcined 
lead, as a primary hue, the context itself is puzzling. So, too, are Vulcan’s 
four companions, traditionally identifi ed as a trio of Cyclops, for they are 
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neither  giants nor one- eyed.27 Nor is this Vulcan a deformed god, but merely 
a shocked cuckold. Th e easy translation of this episode to a vernacular 
idiom, though typical even of the young Velázquez, should not obscure 
the importance of that other forge where the fusion of color with conso-
nance began. Simply put, the gratuitous details of this painting serve to evoke 
the moment when Pythagoras, routinely described as Apollo’s son, entered 
a foundry where fi ve hammers had been pounding molten metal; discard-
ing one, he discovered the crucial ratios between the other four.28

Velázquez off ers no way to assess the importance of this legend. As the 
background fi gure in Apollo at the Forge tends the bellows, and the man on 
the far right is using tongs,  there are but three who wield hammers.  Th ese 
instruments diff er noticeably in size, as in the Pythagorean story. Th ey are 
complemented, however, not by one discordant and summarily discarded 
tool, but by at least fi ve, and possibly more, scattered about the enclave. Th e 
pan of a balance, entirely unsuited to the oversized hammers, lies aban-
doned on the fl oor; a steelyard dangles unused next to the chimney. Th e 
apparent irrelevance of  these weighing devices in Apollo at the Forge corre-
sponds, roughly, to something like a visual pun in Joseph’s Bloodstained 
Coat, the baculus Jacobi or “Jacob’s staff ” being a traditional instrument for 
calculating  angles. Th is studied emphasis on a kind of inadequation between 
the physical world and our means of numbering and mea sur ing its phe-
nomena would seem the very antithesis of the Pythagorean episode at the 
forge, and a defi nitive break with that early attempt to mea sure and codify 
aesthetic production.

But we might just as easily conclude that the painting involves not a re-
jection of the neatness of Pythagoras’s approach to sound and by extension 
to color but rather an uncanny prelude to that foundational moment. In such 
a reading, the emphasis is less on the evident disorder of the forge than on 
the very fact of its reduction to an image. Put diff erently, the scene at this 
forge, anterior to that of the origins of  music, can be rendered only through 
visual means; like the banal motif of marital disharmony with which it is 
seemingly concerned, it cannot be captured through consonant ratios of 
sound. While clearly adhering to a vestigial or rather incipient version of the 
Pythagorean intervals in his treatment of color in both paintings,  here Ve-
lázquez would have insisted on the absolute autonomy, priority, and perma-
nence of his art. Th e work would have thus stood as a corrective to the 
long- standing subordination of color to sound and, by implication, of a cru-
cial feature of painting to the strictures of musical harmony. If such was his 
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intention, it is a  matter of some irony that this aspect of the painting— its 
bid for priority and longevity— has been compromised by the instability of 
the medium.

In  either guise, fi  nally, Apollo at the Forge would appear remote from the 
tale of the tormented pigment grinder, and yet Malaspina’s anecdote antici-
pates both readings. Th e decorous wreckage strewn about the forge, the dis-
concerting mismatch between the instruments depicted and the celebrated 
story of Pythagoras’s discovery, and the suggestion of an irremediable in-
commensurability between the paint er’s medium and the harmonic ratios 
all fi gure as a sequel to the brass merchant’s initial exposure of the strange 
place of number in the pigment grinder’s shop. But as we might expect in a 
work whose focus is the antecedent to the Pythagorean moment in the forge, 
the canvas also articulates a corrective to the temporal feature parodied in 
Two Hundred Novellas and promoted without irony in early modern dis-
cussions of color. In the interest of undoing the priority claim of  music, it 
refashions that insistence on a pronounced gap, typically on the order of a 
generation, between the discovery of something about the mathematization 
of nature  under the aegis of sound and its disclosure in print. “Be like a  father 
to me,” the hapless pigment grinder asked the brass merchant, as if to avail 
himself of a previous generation’s wisdom; “you  will be like a son to me,” Ve-
lázquez’s Apollo might have observed to the as yet unborn Pythagoras.

notes

 1. Th is and all subsequent translations are mine  unless other wise 
indicated.
 2. More generally, see Fideler (1988); for another version of the story, 
see “Life of Pythagoras,” in Guthrie (1988, 86–87); for background on 
Boethius’s debt to Pythagorean and Ptolemaic arguments, see Goldberg 
(2011, 19–30). On the legend, its presuppositions, and consequences, see 
Heller- Roazen (2011, 11–59); on the place of Pythagorean mathe matics in 
the world of Galileo Galilei, see Peterson (2011, 33–42, 57–65, 149–73, 
257–58); on the importance of early modern  music theory in the evolution 
of number theory, see Pesic (2010).
 3. On the history of eff orts to pair musical consonance with colors, see 
Gage (1993, 227–46) and Kuehni (2007).
 4. On the relationship between artisanal knowledge of color mixing, 
particularly that of paint ers and dyers, and Isaac Newton’s eventual treat-
ment of white light, see Shapiro (1994).
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 5. On the traditional re sis tance to color mixing, and on the emergence 
of the practice of layering in the early modern period, see Hall (1992, 15–16, 
52–57, 71–73, 211–17).
 6. Salviati’s illustrations  were for Guidi (1544). On Ghirlandaio’s 
 re sis tance to experimentation with color mixing, his reversion to the 
older mode of unbroken color established by Cennino Cennini, and on 
Salviati’s imitations of vari ous color modes, see Hall (1992, 57, 61, 67, 
163–66).
 7. See also Kirby, Nash, and Cannon (2010, 67, 147–48, 151, 244). As 
Gage notes, Alexander of Aphrodisias referred in passing, and dismissively, 
to the artifi cial production of purple and green around 200 AD; see Gage 
(1993, 31).
 8. On the trade in early modern pigments and dyes in Venice, see Mat-
thew (2002). On the prices of pigments in early modern Italy, and on their 
relation to genre, see Spear and Sohm (2010, 65–66, 101–4).
 9. “Speech on Bringing in a Bill against Abuses in Weights and Mea-
sures,” in Bacon (1868, 18).
 10. Galilei’s associate Ercole Bottrigari took up the argument in 1609 in 
his unpublished Enigma of Pythagoras.
 11. On the commerce in colorants in Venice, see Matthew and Berrie 
(2010); Krischel (2010). For an overview of developments in the Venetian 
treatment of color, see Hall (1992, 199–235).
 12. On the ongoing confl ict between Zarlino and Galilei, see Heller- 
Roazen (2011, 61–69); Palisca (2006, 29–47, 142–44, 150–52); and Peterson 
(2011, 153–73); on Zarlino’s senario in par tic u lar, see also Wienpahl (1959, 
27–41). For a recent in- depth study of the entire dispute, see Goldberg 
(2011): on Zarlino’s dedication to Alvise Mocenigo, see (2011, 44–45, 49), on 
his alleged attempt to delay Galilei’s Dialogue on Ancient and Modern  Music 
in 1581, see (2011, 220–21, 265–67).
 13. On the emergence of the major and minor thirds, see Heller- Roazen 
(2011, 62, 80–81).
 14. On the traditional discussions involving the status of the tone, see 
Heller- Roazen (2011, 28–29, 32–40, 53–54).
 15. On the syntonic diatonic scale, and on Galilei’s criticism of this 
choice, see Goldberg (2011, 57–64, 101–49, 240–48, 272–393).
 16. For similar combinations, see Erizzo (1558, fol. 30v); Curaeus (1567, 
fol. 69 r– v); Caracciolo (1589, 257).
 17. De Boodt’s doctoral degree was awarded in 1586 or 1587; Scarmi-
glioni was awarded a degree in June 1589; see Zonta and Brotto (1969, 4:3; 
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1469–70; 4:4, 2354). On de Boodt and Scarmiglioni, see Parkhurst (1971); 
Shapiro (1994, 606–9); Gage (1993, 34–37, 93–96, 153–56, 165–68); Kemp 
(1990, 266, 275–76, 281–82).
 18. On the confusion over this substance, see Falloppio (1564, 152–54, 
164–66); Guidi (1626, 369); on the departure of minium and the paucity of 
orange in the quattrocento palette, see Hall (1992, 15, 208, 257); see further 
Kirby, Nash, and Cannon (2010, 84n40, 305, 457).
 19. Galileo Galilei to Belisario Vinta, May 7, 1610, in Galilei (1967, 
10:352). Curiously, the entry on Galileo written by Count Angelo de Guber-
natis and published in an encyclopedia of 1901 refers to the work as “an 
essay, now lost, [establishing] the profound truth of the laws of consonance 
and dissonance, or the unity and variety of colors” (Adams and Rossiter 1901, 
5:13).
 20. Th e fact that Mainetti would be misidentifi ed in the 1620s in Jacopo 
Soldani’s poem “Contro gli aristotelici” as an exemplar of Paduan philoso-
phy is perhaps an index of the par tic u lar impact of his arguments in the 
celebrated university of that city.
 21. On Aguilon, see Parkhurst (1961); Kemp (1990); Shapiro (1994, 
606–9).
 22. On the re sis tance or indiff erence to Aguilon’s argument, see Shap-
iro (1994, 615–18).
 23. Th e work on  music theory is generically described as “De arte 
música,” and attributed to “Lipo Gailo,” perhaps a misreading of “Vzo Gali-
lei.”
 24. On the landscapes, see Brown and Garrido (1998, 57–61).
 25. On the limited number of pigments favored by Velázquez, see Brown 
and Garrido (1998, 17–19).
 26. On smalt, see Zahira Véliz, “In Quest of a Useful Blue in Early Mod-
ern Spain,” and Nicola Costaras, “Early Modern Blues: Th e Smalt Patent in 
Context,” in Kirby, Nash, and Cannon (2010, 389–414); on Velázquez’s early 
use of smalt as a colorant (rather than as a siccative), see p. 393, as well as 
Brown and Garrido (1998, 39).
 27. In his Life of Velázquez, Palomino notes that in the much  later de-
piction of Vulcan painted by Juan Carreño and overseen by Velázquez, the 
Cyclops  were three in number and named “Brontes, Steropes and Pyrac-
mon” (Palomino 2007, 155).
 28. Pythagoras’s biographers generally ascribe belief in his divine nature 
and his descent from Apollo to reckless poets and to common  people; oc-
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casionally he is said to be Apollo himself. For such references in the ac-
counts of Iamblichus, Porphyry, and Diogenes Laertius, see Guthrie (1998, 
57, 58, 59, 61, 80, 83, 97, 101, 109, 123, 128, 129, 144, 147). At least one early 
modern writer identifi ed the workers encountered by Pythagoras in the 
forge as the Cyclops (Ringhieri 1551, fol. 144).
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The sixteenth and seventeenth  centuries have long been 
seen as fundamentally impor tant to an understanding of the changing study 
of nature. Th e changes in this period have been variously categorized by his-
torians as philosophical, methodological, or mathematical, among other 
explanations. One of the profound transformations that took place was the 
introduction of mathe matics into the language of description and explana-
tion of nature. Many historians and phi los o phers have investigated this 
translation, which allowed the description of the occult and unseen forces 
of nature, introduced a new logical structure and language, and made natu-
ral knowledge increasingly useful for technological changes. Once  adopted, 
the advantages of a mathematical lexicon  were clear. But how and why did 
that adoption take place? In the sixteenth  century, mathe matics was a 
study separate from (and inferior to) natu ral philosophy; thus, the story of 
the mathematization of the worldview is also the story of how mathe matics 
and mathematicians came to have a status previously aff orded to philoso-
phy alone. In order to understand how and why  those who studied nature 
came to adopt the language of mathe matics, we need to look at the men 
who  were using mathe matics in their everyday work— mathematical prac-
ti tion ers. Mathe matics and mathematical prac ti tion ers played an essential 
role in the transformation of science in this early modern period, as we 
can see by examining the role of mathe matics and mathematical practice, 
utility, commerce, and trade on the changing ideology and methodology 
of science.

8

the role of mathematical prac ti tion ers 
and mathematical practice in developing 
mathe matics as the language of nature

lesley b.  cor m ack
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the mathematization of nature

Th e  great early and mid-twentieth- century historians of scientifi c ideas, 
scholars such as Edwin Burtt, Herbert Butterfi eld, and especially Alexandre 
Koyré and  E.  J. Dijksterhuis, argued that the move to mathematical lan-
guage, and with this a move  toward a mechanization of nature, was the de-
fi ning characteristic of the age they called the scientifi c revolution (Burtt 
1924; Butterfi eld 1949; Koyré 1957; Dijksterhuis 1961).1 Indeed, the discipline 
of history of science  really began in the twentieth  century by focusing on 
the prob lem of the origin of modern science. Th e work of some of its  great 
found ers concentrated on what this impor tant transformation was and how 
it took place. In the 145 years between Copernicus and Newton,  people in-
terested in the Book of Nature developed new methodologies including ex-
perimentation; new attitudes  toward knowledge, God, and nature; a new 
ideology of utility and pro gress; and new institutional spaces and practices.2 
Th ey began to view the world as quantifi able, investigable, and controllable. 
By the end of the period, the investigation of nature, still tied to theological 
concerns, but increasingly to practical ones as well, was carried out in com-
pletely new places, for diff  er ent ends, and with quite diff  er ent results.

Why was mathe matics so power ful for  these historians? First, and per-
haps most obviously, modern science was heavi ly mathematical and so when 
they sought the origins of modern science, mathe matics was a necessary pre-
requisite. Mathe matics, especially Euclidean geometry, introduced a new 
logical rigor into argumentation. While  there had been impor tant disagree-
ments about the status of mathematical truth, with Peter Ramus for exam-
ple arguing that mathe matics was a natu ral attribute of  humans made more 
abstract and obscure by mathematicians such as Euclid, and Henry Saville 
insisting that abstraction demonstrated the perfection of mathematical 
knowledge (Goulding 2010), mathe matics seemed to off er a clear language 
and to demonstrate under lying truths about nature.  Th ose who argued for 
its importance, like John Dee or Isaac Newton, quoted the familiar biblical 
passage, “thou hast ordered all  things in mea sure and number and weight.”3

A prob lem with this  grand historical narrative is that in the medieval 
and early modern periods mathe matics was not part of natu ral philosophy. 
Mathe matics was a separate area of investigation from natu ral philosophy 
and  those interested in mathematical issues had usually tied such studies to 
practical applications, such as artillery, fortifi cation, navigation, and survey-
ing.4 Th e mathematical quadrivium and natu ral philosophy  were studied in 
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diff  er ent parts of the university curriculum and the status of mathema-
ticians was substantially lower than that of phi los o phers or theologians 
(Feingold 1984; Biagioli 1989, 2007). Given this split, it is not self- evident that 
a natu ral phi los o pher would see the benefi ts of adding mathe matics to his 
explanations of the world.

And yet, it is clear that many who studied and developed explanations 
of nature did employ mathe matics. Studies of the work of Galileo, Huygens, 
Newton, and Leibniz, among  others, point to the profound importance of 
mathe matics to their explanations and worldviews. Such scholars asked dif-
fer ent questions of nature— questions about mea sure ment and prediction— 
because they had access to mathe matics. Th ey devised new ways of  doing 
mathe matics. So what  were the origins of this interdisciplinary moment?

Th e key to understanding this development must be sought in the socio-
economic transformation of Eu rope, not simply in a metaphysical gestalt 
switch. A so cio log i cal change in who, where, and why the world was inves-
tigated was taking place.5 A crucial category of scientifi cally inclined men 
downplayed by most historians of the period, the mathematical prac ti tion-
ers, was crucial to this transformation.6  Th ese mathematical prac ti tion ers 
became more impor tant in the early modern period and provided a neces-
sary ingredient in the transformation of nature studies to include mea sure-
ment, experiment, and utility (Bennett 1991).7 Th eir growing importance 
was a result of changing economic structures, developing technologies, and 
new politicized intellectual spaces such as courts and merchants’ shops, and 
thus relates changes in ‘science’ to the development of mercantilism and the 
nation- state.

the study of mathe matics

In the early sixteenth  century, few Eu ro pean scholars  were interested in 
questions of mathe matics. While Merton College in Oxford, for example, 
had been famous throughout Eu rope in the thirteenth and  fourteenth cen-
turies for its school of kinetics, this fame had dwindled by the sixteenth 
 century and scientifi c study had largely been superseded by more humanis-
tic pursuits. Most scholars and educational reformers in the fi rst half of the 
sixteenth  century  were more concerned with the introduction of classical 
languages and lit er a tures, and especially with the religious controversies 
swirling around them than with the structure of the natu ral world. Th is 
began to change in about the  middle of the  century and by 1600, natu ral 
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phi los o phers and mathematicians  were active and innovative. Why then 
did scholars, educational reformers, and prac ti tion ers change their minds?

One of the answers is that the goals of education altered dramatically 
during the  century. Where few courtiers, politicians, or civil servants  were 
university- trained at the beginning of the  century, by 1600 a university 
education was practically a requirement (Stone 1964; see also Cormack 
1997; McConica 1986). Th is changed the content of education as well as its 
delivery. Th e direction of education was also linked to patronage and as pa-
tronage patterns changed, natu ral phi los o phers and mathematicians  were 
increasingly sought (Moran 1991; Biagioli 1993; Smith and Findlen 2002). 
 Th ese patrons, both merchants and courtiers,  were responding to an evolv-
ing economic imperative, brought about by the rapid expansion of mercan-
tile and trading opportunities.  Th ese activities, particularly by the trading 
companies,  were in turn partly made pos si ble by the increasing sophistica-
tion of the natu ral phi los o phers and mathematical prac ti tion ers.

Th e impetus for increased mathematical education and investigation 
came from outside the traditional scholarly community. Merchants and 
trading companies in northern Eu rope particularly  were interested in ap-
plied mathematical practice, especially navigation, surveying, and account-
ing. Th is need became more pronounced as  these merchants changed their 
focus to the Atlantic trade, putting them in competition with the much 
better informed Spanish and Portuguese. By the mid- sixteenth  century, 
merchant companies believed that they needed a more theoretical ground-
ing in mathe matics, especially  because they needed to navigate largely 
uncharted northern  waters, and they began to patronize mathematical 
prac ti tion ers. Eventually, this led to impor tant connections among  these 
prac ti tion ers, skilled artisans, and natu ral phi los o phers.

Th e En glish Muscovy Com pany provides an in ter est ing example of the 
new mercantile emphasis on mathe matics. Th e merchants in this trading 
com pany recognized their need for mathematical knowledge in order to un-
dertake signifi cant ocean voyages and soon commissioned Robert Recorde to 
write mathematical books for the use of their navigators. In 1551 Recorde 
published Pathway to Knowledge, an explication of geometry through the 
fi rst four books of Euclid’s Ele ments, and in 1556 (reissued 1596), Th e  Castle of 
Knowledge, containing the explication of the Sphere, dealing with spherical 
geometry, astronomy, and navigation (Recorde 1551; 1556). Th e latter was 
written and printed for the use of the Muscovy Com pany, and mentioned 
the Portuguese discoveries in order to illustrate the positions of the earth 



with res pect to the sun. It was based on Ptolemy’s astronomy and incorpo-
rated more recent astronomical work, including a brief, favorable mention 
of Copernican theory. Recorde’s Whetstone of Witte (1557), his explication 
of algebra, was dedicated to the governors of the Muscovy Com pany and 
written, so Recorde claimed, to encourage the  great exploration and trading 
enterprise on which they  were embarked. He even promised to produce a 
 future book (never written), in which “I also  will shewe certain meanes how 
without  great diffi  cultie you mai saile to the North- Easte Indies. And so to 
Camul, Chinchital, and Balor” (Recorde 1557, fol. a3b). Whetstone was never 
reprinted, perhaps  because it dealt with diffi  cult mathematical concepts. It 
was based on German algebraic texts, including the treatment of the qua-
dratic. Taken as a  whole, Recorde’s mathematical books contained a full 
course of mathematical study and many Elizabethan natu ral phi los o phers 
and mathematicians began their education with Recorde’s books.8 In this 
way, he was hugely infl uential in developing the En glish scientifi c endeavor, 
which therefore owed much to mercantile patronage.

Th e teaching and learning of mathematical knowledge in early modern 
Eu rope thus involved a complex interaction among scholars, prac ti tion ers, 
merchants, and gentry. Humanists and scholars at the university saw the 
value of mathematical knowledge for its intrinsic natu ral philosophical ben-
efi t as a way of understanding God’s handi work (see, for example, Elyot 1531, 
sig. 37a; Pace 1517, 109). Mathe matics became an impor tant part of both the 
formal and informal curricula at early modern universities (Feingold 1984). 
Equally, prac ti tion ers— instrument makers, entrepreneurial teachers, math-
ematical prac ti tion ers— were interested in mathematical knowledge for its 
application, its rhetorical power, and its value to potential patrons and 
employers (Recorde 1543, sig. A2a). Merchants and gentry needed secure 
knowledge for navigation, warfare, and investment.

Th us, the teaching and learning of mathe matics took place at a variety 
of venues, some formal and some informal. Th e formal educational system 
was itself in a period of expansion and change, moving from an earlier 
church- based and - oriented institution, to one catering to a wider social de-
mographic and to more po liti cal and mercantile  career paths. At the same 
time, many young men (and some young  women) had increasing access to 
printed texts, allowing them to teach themselves, and a new group of entre-
preneurial teachers sprang up who could supply alternative instruction, 
 either through personal tutoring, group lessons, or through the writing of 
self- help texts designed for the autodidact.
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mathematical prac ti tion ers and mathematical lectures

London was a busy metropolis in the last de cades of sixteenth  century, both 
for the numerous and hard- working merchants and for  those more interested 
in mathematical and natu ral philosophical pursuits (Harkness 2007).9 Th e 
Inns of Court, Parliament, and the Royal Court all provided reasons for 
many young men and  women to fi nd their way to the city. Combined with a 
growing interest in trade, investment, and exploration, London was an in-
creasingly attractive destination for young men from the country, fresh from 
university or their estates,  eager to make their way in the world and to fi nd 
communities of like- minded individuals.  Th ese new inhabitants of London, 
combined with skilled émigrés fl eeing the religious trou bles of the continent, 
ensured that  there was both the expertise in mathe matics and a ready 
market for this expertise. In the second half of the sixteenth  century, a num-
ber of university- trained or self- taught men set themselves up as mathe matics 
teachers and prac ti tion ers.  Th ese men, who we might call mathematical 
prac ti tion ers, sold their expertise as teachers through publishing textbooks, 
making instruments, and off ering individual and small group tutoring. In 
the pro cess, they argued for the necessity of practical knowledge of mea sure-
ment, winds, surveying, and mapping, among  others, rather than for a more 
philosophical and all- encompassing knowledge of the earth.

Most mathematical prac ti tion ers  were university- trained, showing that 
the separation of academic and entrepreneurial teaching was one of venue 
and emphasis, rather than background. Mathematical prac ti tion ers claimed 
the utility of their knowledge, a rhetorical move that encouraged  those seek-
ing such information to regard it as useful.10 It is impossible to know the 
complete audience for such expertise, but En glish mathematical prac ti tion-
ers seem to have aimed their books and lectures at an audience of London 
gentry, merchants, and occasionally artisans.11 It is prob ably this choice of 
audience that most infl uenced their emphasis on utility, since London gen-
try and merchants  were looking for practicality and means to improve 
themselves and their businesses.

Mathematical prac ti tion ers professed their expertise in a variety of 
areas, especially such mathematical applications as navigation, surveying, 
ballistics, and fortifi cation. For example, Galileo’s early works on projectile 
motion and his innovative work with the telescope  were successful attempts 
to gain patronage in the mathematical realm.12 Descartes advertised his abil-
ities to teach mathe matics and physics. Simon Stevin claimed the status of a 



mathematical practitioner, including an expertise in navigation and survey-
ing.13 William Gilbert argued that his larger philosophical arguments about 
the magnetic composition of the earth had practical applications for navi-
gation.

In  Eng land, an early example of a mathematician using his expertise to 
improve the mathematical underpinning of  these useful arts was Robert Re-
corde, employed by the Muscovy Com pany to give lectures and write a text-
book in elementary mathe matics in the 1550s (Cormack 2003; Johnston 
2004). Recorde’s early foray was to be repeated, especially in London, by 
mathematical prac ti tion ers, many of whom, such as Th omas Hood and Ed-
ward Wright, demonstrated an interest in mapping and navigation explic itly.

 Th ese mathematical prac ti tion ers off ered lectures, individual tutelage, 
and the instruments to explicate the mathematical structure of the world. 
Sometimes this was done on a completely entrepreneurial model, that is, 
where the practitioner hung out his shingle and attracted clients through 
publishing and publicity. At other times, mathe matics lectures  were founded 
and supported by a small group of interested men, such as was the case with 
Th omas Hood.

thomas hood as the fi rst london mathematical lecturer

Th omas Hood (1556?–1620) was the fi rst mathe matics lecturer paid by the 
city of London and thus fi ts a patronage model of mathe matics lecturers. 
However, he also published and encouraged private pupils, and therefore 
was equally an entrepreneurial mathe matics teacher. Hood attended Trin-
ity College, Cambridge, where he received his bachelor’s degree in 1578 
and his master’s in 1581.14 In 1588, Hood petitioned William Cecil, Lord 
Burghley, to support a mathe matics lectureship in London, to educate the 
“Capitanes of the trained bandes in the Citie of London.”15 Th is was a com-
plex proposition  because the Aldermen and Lord Mayor of London would 
be the ones paying the bills, but the Privy Council had to give its approval 
in order to allow the lectures to proceed.

Hood received the following positive response from the Privy Council: 
“Th e readinge of the Mathematicall Science and other necessarie  matters for 
warlike ser vice bothe by sea and lande, as allso the above saide traninge 
shalbe continued for the space of 2 yeares frome Michaelmas next to come and 
so muche longer as the L. Maior and the Citie  will give the same alowance or 
more then at this pres ent is graunted.”16 Hood’s lectureship therefore went 
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forward, held in the home of Sir Th omas Smith, merchant and  later gover-
nor of the East India Com pany. Th e makeup of the audience is now unknown, 
although from the tone of his introductory remarks, published  under the 
title A Copie of the Speache made by the Mathematicall Lecturer, unto the 
Worshipfull Companye pres ent . . .  in Gracious Street: the 4 of November 
1588, Hood seemed to be talking to his mathematical colleagues and mer-
cantile patrons, rather than to the mari ners he insisted needed training 
(Hood n.d., 1588, sig. A2aff ). Th e contents of Hood’s lectures are also un-
known, but the treatises bound with the British Library copy indicate that 
he stressed navigational techniques, instruments, astronomy, and geometry 
(Hood 1596, 1598).17

By 1590, Hood had been giving  these mathe matics lectures for almost 
two years, as he reported in his 1590 translation of Ramus: “so that the time 
limited unto me at the fi rst is all most expired. . . .  In this time I have binne 
diligent to profi te, not onlie  those yong Gentlemen, whom comonlie we call 
the captaines of this citie, for whose instruction the Lecture was fi rst  under 
taken, but allso all other whome it pleased to resorte unto the same” (Ra-
mus 1590, sig. 2a). Hood identifi ed himself on the title pages of all his books 
 until 1596 as “mathematical lecturer to the city of London,” sometimes ad-
vising interested readers to come to his  house in Abchurch Lane for further 
instruction, or to buy his instruments.18 His books explain the use of math-
ematical instruments such as globes, the cross- staff e, and the sector, sug-
gesting that his lectures and personal instruction would have emphasized 
this sort of instrumental mathematical knowledge and understanding. 
While some historians have questioned what happened at Hood’s lectures 
(or if indeed they did happen), this larger evidence indicates both that  there 
 were such lectures, and that a number of leaders of the community, as well 
as mathematical prac ti tion ers like Hood, thought they  were impor tant in 
creating mathematical literacy and conversation in the city of London.19 
Th is was the beginning of a recognition of the power of mathe matics for 
understanding the answers to practical prob lems and with it a sense that 
mathematical answers  were as legitimate as philosophical ones.

mathe matics changes the geo graph i cal conversation

Given that the connection between mathe matics and natu ral philosophy 
was a new interdisciplinary interaction, the best place to fi nd such an inter-
connection would be in a study that blended mea sure ment and larger philo-



sophical theories. One such area of interest was to be found in the 
mathematical study of geography.

In sixteenth- century  Eng land, geography was a fl ourishing area of inves-
tigation. It was studied as part of the arts curriculum at both Oxford and 
Cambridge and therefore made up part of the worldview of most educated 
gentlemen and merchants.20 Th e study of geography included a mathemati-
cal model of the earth, descriptions of its distant lands and inhabitants, and 
the local history of more immediate surroundings, what I have elsewhere 
labeled mathematical geography, descriptive geography, and chorography.21 
 Because it relied on geographers of antiquity, such as Ptolemy and Strabo, to 
provide a backbone for modern investigation, geography was a discipline 
that used the methods of the humanists and the tradition of university 
scholars. Equally, geography was a study inspired by and reliant on new dis-
coveries, voyages, and travels and so was integrally connected to the testi-
mony and experience of practical men. Th us, geography existed as a point 
of contact for theoretical university scholars and practical men of aff airs. 
Equally, it provides an excellent example of how mathe matics could change 
the natu ral philosophical conversation, as well as the  people conversing.

Geography embodied that dynamic tension between the world of the 
scholar, since geography was an academic subject legitimated by its classi-
cal, theoretical, and mathematical roots, and the world of the artisan, since 
it was inexorably linked with economic, nationalistic, and practical endeav-
ors. It provided a synthesis that enabled its prac ti tion ers to move beyond the 
confi nes of natu ral philosophy to embrace a new ideal of science as a power-
ful tool for understanding and controlling nature. Th e usefulness of geo-
graph i cal study was of paramount importance to the new men attending 
the universities in ever greater numbers and it was this concept of utility to the 
state and to the individual that drove  these new university men to investi-
gate and appreciate geography.22 Th e geo graph i cal community, then, was a 
wide- ranging group, with many diff  er ent concerns and goals, but with a de-
sire to be useful to the nation and to their own self- interest and a vision of 
 Eng land as an increasingly illustrious player on the world stage.

Th e En glish geo graph i cal community was complex, due in large part to 
its necessarily close connection between handwork and brainwork. Even the 
most theoretical geographer required the information and insight of navi-
gators, instrument makers, cartographers, and surveyors in order to under-
stand the terraequeous globe. Th is can be seen in the work of Richard 
Hakluyt, who used sailors’ tales to construct a description of the world and 
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 Eng land’s role in its discovery, and who in Principal Navigations created a 
predominantly practical document with impor tant theoretical insights. 
Edward Wright, a serious mathematical geographer whose fi rst- hand expe-
rience on voyages of discovery deeply aff ected his research program, also 
provides an impor tant example of someone who mediated between theory 
and practice. Equally, the collaboration between John Dee, a university- 
trained mathematician and geographer, and Henry Billingsley, a London 
merchant, in the 1570 translation of Euclid indicates the fruitful exchange 
between the life of the mind and that of the marketplace (Dee 1570). Dee’s 
 career provides a particularly telling example of the importance of the 
theoretical- practical spectrum, and with it an interest in both mathe matics 
and natu ral philosophy. Dee would prob ably have identifi ed himself as a 
natu ral phi los o pher and certainly worked throughout his life to create a new 
theoretical worldview as well as to achieve a higher social status. Yet he was 
engaged much of the time in more practical mathematical pursuits, espe-
cially astronomical and geo graph i cal ones.23 He advised most navigators 
setting out on northwest or northeast voyages, devised map projections and 
navigational instruments, and wrote position papers for the Privy Council 
on the po liti cal ramifi cations of En glish geo graph i cal emplacement.24 Th us 
Dee, like many other mathematical prac ti tion ers, developed multiple and 
overlapping roles as scholar, craft sman, and statesman. Th is complex social 
world encouraged such men to integrate mathe matics into their larger natu-
ral philosophical investigations and explanations.

wright and harriot as mathematical prac ti tion ers

 Th ere are many examples of  these interactive roles and disciplines. Two ge-
ographers who combined the life of the natu ral philosophical scholar with 
that of the mathematical practitioner  were Edward Wright (Apt 2004) and 
Th omas Harriot (Roche 2004). Both  were university- educated men, who had 
learned the classical foundations of their subject, as well as recent discover-
ies and theories. But  these two  were not isolated or traditional scholastics. 
Both went on prolonged voyages of discovery and learned navigation and its 
prob lems from the rude mechanicals and skilled navigators they encoun-
tered. Th ey recognized the need to use mathe matics to mea sure and under-
stand the practical prob lems they encountered. Th ey went beyond this 
practical knowledge, however, to try and formalize the structure of the globe 
and the understanding of the new world. Both  were connected with impor-



tant courts and patrons, and both used the cry of utility and imperialism to 
argue the need for geographic knowledge.

Edward Wright, the most famous En glish geographer of the period, was 
educated at Gonville and Caius College, Cambridge, receiving his bachelor’s 
degree in 1581 and his master’s in 1584. He remained at Cambridge  until 
the end of the  century, with a brief sojourn to the Azores with the Earl of 
Cumberland in 1589.25

In 1599 Edward Wright translated Simon Stevin’s Th e Haven- fi nding 
Arte from the Dutch (Wright 1599a; Taylor 1954, #100). In this work Stevin 
claimed that magnetic variation could be used as an aid to navigation in lieu 
of the calculation of longitude (Wright 1599a, 3).26 He set down  tables of 
variation, means of fi nding harbors with known variations, and methods of 
determining variations. In his translation Wright called for systematic ob-
servations of compass variation to be conducted on a worldwide scale, “that 
at length we may come to the certaintie that they which take charge of ships 
may know in their navigations to what latitude and to what variation (which 
shal serve in stead of the longitude not yet found) they  ought to bring them-
selves” (Wright 1599a, preface, B3a).27

Wright’s work demonstrates a close connection between navigation and 
the promotion of a “proto- Baconian” tabulation of facts meant both for 
practical application and scientifi c advancement.  Here appears the founda-
tion of an experimental science, grounded in both practical application and 
theoretical mathe matics, quite separate from any more traditional Aristo-
telian natu ral philosophy or Neoplatonic mathe matics. Unfortunately, 
Wright’s scheme was not entirely successful. By 1610, in his second edition 
of Certaine Errors in Navigation, Wright had constructed a detailed chart of 
compass variation— but he had also become more hesitant in his claims 
concerning the use of variation to determine longitude (Wright 1610a, sigs. 
2P1a-8a;  Waters 1958, 316).

Wright’s greatest achievement was Certaine Errors in Navigation (1599), 
his appraisal of the prob lems of modern navigation and the need for a 
mathematical solution. In this book, Wright explained Mercator’s map 
projection for the fi rst time, providing an elegant Euclidean proof of the 
geometry involved. He also published a  table of meridian parts for each 
degree, which enabled cartographers to construct accurate projections of 
the meridian network, and off ered straightforward instructions on map 
construction (Wright 1599b, sigs. D3a- E4a; Taylor 1954, #99). He also con-
structed his own map using this method. Wright’s work was the fi rst truly 

 developing mathe matics as the language of nature 215



216 lesley b.  cormack

mathematical rendering of Mercator’s projection and placed En glish math-
ematicians, for a time, in the vanguard of Eu ro pean mathematical geogra-
phy. It was equally signifi cant for the close communication it claimed and 
required of theoretical mathematicians and practical navigators.

At about the turn of the  century, Wright moved from Cambridge to Lon-
don, where he established himself as a teacher of mathe matics and geogra-
phy, following in the footsteps of Robert Hood. At about the same time, he 
contributed to Gilbert’s work on magnetism, providing a practical perspec-
tive to Gilbert’s more natu ral philosophical outlook (Pumfrey 2002, 175–81). 
He created a world map using Mercator’s techniques and prob ably aided in 
the construction of the Molyneux globes (Wallis 1952; 1989, 94–104). In the 
early seventeenth  century, he is said to have become a tutor to Henry, Prince 
of Wales (elder son of James), a claim strengthened by Wright’s dedication 
of his second edition of Certaine Errors to Henry in 1610 (Wright 1610a, 
sigs. *3a–8b, X1–4; Birch 1760, 389). Upon becoming tutor, Wright “caused a 
large sphere to be made for his Highness, by the help of some German work-
men; which sphere by means of spring- work not only represented the mo-
tion of the  whole celestial sphere, but shewed likewise the par tic u lar systems 
of the Sun and Moon, and their circular motions, together with their places, 
and possibilities of eclipsing each other. In it was a work by wheel and pin-
ion, for a motion of 171000 years, if the sphere could be kept to long in 
motion” (Birch 1760, 389).28

Henry had a deci ded interest in such devices and rewarded  those who 
could create them.29 In addition, Wright designed and constructed a num-
ber of navigational instruments for the prince and prepared a plan to bring 
 water down from Uxbridge for the use of the royal  house hold (Strong 1986, 
218; Wright 1610b, identifi ed by Taylor 1934). In or around 1612, Wright was 
appointed librarian to Prince Henry, but Henry died before Wright could 
take up the post (Strong 1986, 212). In 1614, Wright was appointed by Sir 
Th omas Smith, governor of the East India Com pany, to lecture to the com-
pany on mathe matics and navigation, for which he was paid £50 per annum 
( Waters 1958, 320–21).  Th ere is some speculation as to  whether or not Wright 
actually gave  these lectures, since he died the following year.

Wright thus provides a nice example of a mathematical practitioner who 
provided both intellectual and social connections between theory and prac-
tice. He was university- trained and worked as a teacher at vari ous points in 
his  career. He was interested in theoretical prob lems, including the mathe-
matically sophisticated construction of map projections, and aided Gilbert 



in his philosophical enterprise. On the other hand, this was an academic 
who respected practical experience. He himself experienced the prob lems of 
ocean navigation, he built instruments, and he solicited the help and opin-
ion of sailors and navigators. His motivation for this balancing of handwork 
and brainwork  were many, prob ably including fi nancial gain and social 
prestige as well as more intellectual concerns. He was certainly concerned 
with the usefulness of his investigations and, through the patronage support 
of aristocrats, Prince Henry, and the East India Com pany (somewhat lat-
terly), was able to argue the utility of geo graph i cal knowledge both to impe-
rial and mercantile  causes. Mathe matics provided a language for both his 
practical and theoretical pursuits, demonstrating a new integration of  these 
diff  er ent branches of knowledge.

Another preeminent fi gure in mathematical geography, also connected 
with Prince Henry, was Th omas Harriot (Shirley 1983). Harriot attended 
Oxford at the same time as Wright was at Cambridge. He matriculated from 
St. Mary’s Hall in 1577 and received his bachelor’s degree in 1580. By 1582 
he was in the employ of Sir Walter Ralegh, who sent him to  Virginia in 1585. 
Harriot, like Wright, was an academic and theoretical geographer whose 
sojourn into the practical realm of travel and exploration helped form his 
conception of the vast globe and of what innovations  were necessary to travel 
it. Harriot’s description of  Virginia, seen in his Brief report of . . .   Virginia 
(1588),30 was “the fi rst broad assessment of the potential resources of North 
Amer i ca as seen by an educated En glishman who had been  there” (Quinn 
1974, 45).31 Harriot compiled the fi rst word list of any North American In-
dian language (prob ably Algonquin) (Shirley 1983, 133), a necessary fi rst 
step of classifying in order to control, thus illustrating that inductive spirit 
never far from the heart of even the most mathematical geographer. He saw 
 Virginia’s  great potential for En glish settlement, provided that the natives 
 were treated with res pect and that missionary zeal and En glish greed  were 
kept to a minimum.32 His advice concerning Virginian settlement was to 
prove impor tant as the  Virginia companies of the seventeenth  century  were 
established. Th is was the work of a man very aware of the practical and eco-
nomic ramifi cations of the intellectual work of describing the larger world, 
as well as the imperial imperatives at work.

More impor tant for Harriot  were issues of the mathematical structure 
of the globe. Indeed his mathe matics was bound up closely with his impe-
rial attitude generally and the experience of his Virginian contacts in par tic-
u lar.33 He was deeply concerned about astronomical and physical questions, 
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including the imperfection of the moon and the refractive indexes of vari ous 
materials (Shirley 1983, 381–416). Harriot was inspired by Galileo’s tele-
scopic observations of the moon and produced several fi ne sketches himself 
 aft er Th e Starry Messenger appeared. He also investigated one of the most 
pressing prob lems of seventeenth- century mathematical geography— the 
prob lem of determining longitude at sea. Harriot worked long and hard on 
the longitude question and on other navigational prob lems, relating infor-
mally to many mathematical geographers his conviction that compass 
variation contained the key to unraveling the longitude knot (Harriot 1596).

Harriot was a mathematical tutor to Sir Walter Ralegh for much of the 
last two de cades of the sixteenth  century, advising his captains and naviga-
tors, as well as pursuing research in ter est ing to Ralegh. As Richard Hakluyt 
said of Harriot, in a dedication to Ralegh: “By your experience in navigation 
you saw clearly that our highest glory as an insular kingdom would be built 
up to its greatest splendor on the fi rm foundation of the mathematical sci-
ences, and so for a long time you have nourished in your  house hold, with a 
most liberal salary, a young man well trained in  those studies, Th omas Har-
iot, so that  under his guidance you might in spare hours learn  those noble 
sciences.”34

As Ralegh fell from  favor, eventually ending up in the Tower, Harriot 
began to move his patronage expectation to another aristocrat interested in 
mathematical and geo graph i cal pursuits, the ninth Earl of North umberland 
(the so- called Wizard Earl). Although Harriot’s relationship with North-
umberland is somewhat obscure, he appears to have conducted research 
within North umberland’s circle and occasionally his  house hold, as well as 
acting as a tutor as needed. Fi nally, Harriot was also connected with Henry, 
Prince of Wales, as a personal instructor in applied mathe matics and geog-
raphy, just as Wright had been (Shirley 1985, 81). It is likely that Wright and 
Harriot met at Henry’s court. As two university- trained contemporaries, 
with very similar interests and experiences, they would have gained much 
from their association. Given their mutual interests, it would have made 
sense for them to discuss  matters of mutual geo graph i cal and mathematical 
interest while at court together.

Harriot’s  career displays many of the same characteristics as Wright’s. 
Harriot too was a man who drift ed in and out of academic pursuits, from 
university, to  Virginia, to positions as researcher and tutor for Ralegh and 
North umberland. In some ways, he was less connected to practical pursuits 
than Wright, although his trip to  Virginia and his work on longitude indi-



cate his engagement with issues of practical signifi cance. Harriot was also 
dependent on patronage, especially that of Ralegh and of North umberland 
(poor choices as they turned out to be), and used this patronage to help cre-
ate an intellectual community in which mathematical theory and imperial 
utility could be considered equally impor tant.

Wright and Harriot, as well as a host of other geographers interested in 
this interconnection between theoretical and practical issues, combined an 
interest in the mathematical construction of the globe and a new, more 
wide- reaching understanding of basic geo graph i cal concepts with a desire 
for po liti cal and economic power on the part of princes, nobles, and mer-
chants. Th is wide- ranging area of investigation encouraged associations to 
develop between academic geographers, instrument makers, navigators, 
and investors. Th e result was a negotiation between theoretical and practi-
cal issues, which helped introduce mathe matics as a common language and 
rigorous means of analy sis. Th is fruitful association between theory and 
practice helped to determine the kinds of questions  these men asked, the 
kinds of answers that  were acceptable, and the model of the world that 
would be developed. It was the work of mathematical prac ti tion ers such as 
 these geographers that introduced mathe matics to natu ral philosophical 
questions and to questions of natu ral knowledge more broadly. Th e utility, 
or at least the perceived utility, of such a language is part of the reason that 
mathe matics became the language of nature in the years to come.

conclusion

Hood, Wright, and Harriot provide good examples of the kind of investiga-
tors necessary for the introduction of the language of mathe matics into the 
study of nature.  Th ese three men, and many other mathematical prac ti tion-
ers, represent the communication between theory and practice, both within 
their own  careers and ideas, and between universities, courts, print shops, 
the shops of instruments makers, and many other liminal venues. Th eir lives 
and  careers show that new locales  were becoming impor tant for the pursuit 
of natu ral knowledge, including urban shops and  houses on the one hand, 
and the courts and stately homes of aristocratic and noble patrons on the 
other. Wright and Harriot also demonstrate within their scientifi c world-
views an in ter est ing mixture of theory, inductive fact gathering, and quan-
tifi cation, which provided part of the changing view  toward nature and its 
investigation so impor tant for the changing emphasis on mathematization. 
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Th ey  were both concerned with practicality and utility, especially within the 
rhe toric they employed to argue their cause, and mathe matics seemed to 
them to provide the useful answers necessary to their  careers and their am-
bitions. But they  were also convinced that mathe matics would help them to 
understand the natu ral world more suffi  ciently. Th eir connections to mer-
cantilism  were impor tant, but do not provide a complete answer to the 
changing emphasis of the study of nature (as Edgar Zilsel [1942] once sug-
gested).35 Th is was not science directed by the bottom line of mercantilist 
expenditure, but rather a more complex interaction among court, national 
and international intellectual communities, and mercantilist enterprise.

Th us, the mathematical prac ti tion ers provided an agent for the chang-
ing nature of the scientifi c enterprise in the early modern period. Th ey cre-
ated a fundamental step  toward the introduction of the language of 
mathe matics into the larger study of nature. Th ey did this by combining 
theory and practice in a new and in ter est ing way. Th ey did so for reasons 
that included the economic and bourgeois changes that  were directly aff ect-
ing Eu rope.  Th ese men  were also concerned with issues of nationalism, im-
perialism, cultural credit, and status, issues that do not fi t easily into a more 
Marxist and materialist interpretation.

Did this change the enterprise of natu ral philosophy? Yes.  Because  these 
men  were interested in mathe matics, mea sure ment and quantifi cation be-
came increasingly more signifi cant. Th eir social circumstances ensured that 
the investigation of nature must be seen to be practical, using information 
from any available source, and science developed a rhe toric of utility and 
pro gress, as well as an inductive methodology, in response. Intimately con-
nected to national pride and mercantile profi t, the science that developed in 
this period refl ected  those concerns. In essence, in large part  because of the 
work of mathematical prac ti tion ers like Hood, Wright, and Harriot, the 
investigation of nature began to take place away from the older university 
venue (though  there remained impor tant connections), with new method-
ologies, epistemologies, and ideologies of utility and pro gress. Th e scientifi c 
revolution had begun.

But  there was still something missing. Hood, Wright, and Harriot did not 
make the transition to natu ral phi los o phers. Despite their best eff orts, they 
remained mathematical prac ti tion ers. And by the end of the seventeenth 
 century, mathematical prac ti tion ers had been reduced to technicians, 
whose presence became less and less vis i ble.36 Meanwhile, natu ral phi los o-
phers such as Robert Boyle and Isaac Newton removed themselves from the 



com pany of mathematical prac ti tion ers, even as they utilized the fruits of 
their  labor. In other words, the fi nal translation of mathe matics as a tool 
and language of natu ral philosophy involved another social transforma-
tion, which devalued the very group that had made it pos si ble.

notes

 1. See Lindberg (1990, 1–26) for a discussion of early uses of the scien-
tifi c revolution as a concept, and Lindberg (16) and Cohen (1994, 88–97) for 
a fuller treatment of Burtt.
 2. Steven Shapin (1996), despite his opening caveat, does a good job of 
laying out some of the changes taking place that made up the scientifi c rev-
olution, as more recently has John Henry (2001).
 3. Wisdom of Solomon 11:20.
 4. Kuhn (1977, 31–65) separates  these two traditions. See also Cun-
ningham and Williams (1993) and Dear (2001) for discussion of this 
separation.
 5. Steven Shapin (1982) made a case for this new interpretation, and 
then, with Simon Schaff er, provided an extremely infl uential case study 
(1985).
 6. With some modifi cation, I take the impor tant classifi cation of the 
more practical men in Taylor (1954). For modern treatment of  these crucial 
fi gures, see Bennett (1986) and Johnston (1991; 1994). Most recently, Pamela 
Long (2011) discusses  these issues.
 7. Kuhn (1977) provides an early attempt to claim a diff  er ent history 
for mathe matics and natu ral philosophy.
 8. In Cormack (1997, 108, 110) I argue that Recorde’s books  were 
owned by many university students and college libraries in the late six-
teenth and early seventeenth  centuries.
 9. For a more general discussion of early modern London, see Rappa-
port (1989) and Archer (1991).
 10. Neal (1999) discusses some attempts to make mathe matics appear 
useful.
 11. Th omas Hood’s lecture, (n.d. 1588) is a good example. See Hark-
ness (2007) for a discussion of the complex interactions among London 
merchants, artisans, and scholars.
 12. Of course, once Galileo successfully gained a patronage position, 
particularly with the Florentine Medici court, he left  his mathematical 
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practitioner roots  behind and became a much higher status natu ral phi los-
o pher (Biagioli 1993).
 13. Descartes was Jesuit- trained (Dear 1995).
 14. Biographical material on Th omas Hood can be found in Taylor 
(1954, 40–41);  Waters (1958, 186–89); Higton (2004).
 15. British Library, Lansdowne 101, f. 56.
 16. British Library, Lansdowne 101, f. 58.
 17. Hood (1596; 1598) are bound together in BL 529, g. 6.
 18. Th omas Hood lists himself as a mathematical lecturer on the fron-
tispiece of the following books: Hood (n.d. [1588]; 1590); Ramus (1590); 
Hood (1592; 1596).
 19. Further evidence of Hood’s lectures is the fact that John Stow men-
tions them (1598, 57).
 20. See Cormack (1997, 17–47) for a full treatment of the place of geog-
raphy in the university curriculum.
 21. See Cormack (1991) for a description of the diff  er ent types of geog-
raphy studied in sixteenth-  and seventeenth- century  Eng land.
 22. See Stone (1964) for an evaluation of the growing numbers of new 
men at the universities in this period.
 23. For the natu ral philosophical work, see Clulee (1988). For his prac-
tical advising, see Sherman (1995).
 24. In many ways, Dee is an En glish Galileo, providing a crossover 
from mathematical practitioner to court natu ral phi los o pher. It is no sur-
prise, however, that Zilsel did not mention him, since his magical heritage, 
made famous by Frances Yates (1972), among  others, discounted him in 
Zilsel’s mind as a true scientist (Zilsel 1942; Harkness 1999).
 25. As a result of this voyage, Wright wrote (1589), which was  later 
printed by Richard Hakluyt, “written by the excellent Mathematician and 
Enginier master Edward Wright” (1598–1600). Hall (1962, 204),  Waters 
(1958, 220), and Shirley (1985, 81) all cite this trip to the Azores as the turn-
ing point in Wright’s  career, his road to Damascus, since it convinced him 
in graphic terms of the need to revise completely the  whole navigational 
theory and procedure.
 26. Bennett (1991, 186) marks the relationship between magnetism and 
longitude as one of the impor tant sites of the scientifi c revolution.
 27.  Waters (1958, 237).
 28. “Mr. Sherburne’s Appendix to his translation of Manilius, p. 86” in 
Birch (1760, 389).



 29. Smuts (1987) especially mentions Salomon de Caus’s La perspective 
avec la raison des ombres et miroirs (London, 1612), dedicated “Au Serenis-
sime Prince Henry,” 157.
 30. Harriot, Briefe and True Report, reproduced verbatim in T. de Bry, 
Amer i ca. Pars I, published concurrently in En glish (Frankfurt, 1590) and in 
Hakluyt (1598–1600, 3:266–80).
 31. See Alexander (2002) for an in ter est ing interpretation of Harriot’s 
mathe matics.
 32. Th e manuscript information concerning this expedition is gathered 
together in Quinn (1955, 36–53). Shirley (1983, 152ff ) discusses Harriot’s 
desire for noninterference. To see White’s illustrations of this expedition, 
see White (2006).
 33. Alexander argued that Harriot’s work on the continuum was infl u-
enced by his view of geo graph i cal bound aries and the “other.” “Th e geo-
graph i cal space of the foreign coastline and the geometrical space of the 
continuum  were both structured by the Elizabethan narrative of explora-
tion and discovery” (1995, 591). Alexander (2002) develops this further.
 34. Richard Hakluyt, introduction to Peter Martyr, as quoted in Shir-
ley (1985, 80). See Shirley (1983) for a fuller discussion.
 35. See Raven and Krohn (2000, xx– xlvi) for an appraisal of the intel-
lectual climate in which Zilsel worked.
 36. Brotton (1997, 186) shows that cosmographers had become employ-
ees of the joint stock companies by the end of the seventeenth  century, while 
Shapin (1994, 355–408) argues for the increasing invisibility of technicians. 
Sprat (1667, 392) celebrates the distance between gentlemen who create new 
knowledge and technicians who can only do as they are told. Jardine (2003) 
suggests that Hooke remained a technician.
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The march  1694 edition of Acta Eruditorum included a short 
article by Leibniz titled “On the Correction of First Philosophy and the 
Notion of Substance.”1 In it Leibniz complains about an emerging trend of 
obscurity in metaphysics, attributing it in part to a widening rift  between 
work in metaphysics and work in mathe matics. In July of that year Leibniz 
wrote to Jacques- Bénigne Bossuet, including with the letter a copy of a man-
uscript titled “Refl ections on the Advancement of the True Metaphysics and 
Particularly on the Nature of Substance Explained by Force.”2 Th is was an 
expanded version of the Acta Eruditorum article. As in the article, Leibniz 
complains about the growing rift  between metaphysics and mathe matics. His 
remedy for phi los o phers is implicit though clear: the growing obscurity in 
metaphysics could be wiped clean by the co- opting of mathe matics. By No-
vember of that same year, he looks to have  adopted his remedy, writing to the 
Marquis de l’Hospital, “My metaphysics is all mathe matics, so to speak, or it 
can become so” (1846–60, GM 2:255–62).3 Th is suggests that Leibniz believed 
that he had been able to wipe clean any obscurity that may have existed with 
res pect to the most impor tant components of his metaphysics, by clearly ar-
ticulating them by way of certain concepts taken from mathe matics.

In both the Acta Eruditorum article and the manuscript sent to Bossuet, 
Leibniz claims that the centerpiece of his new philosophical system is his no-
tion (notione) of a substance. For not only does it yield “impor tant truths 
about God, the soul, and the nature of body” (Leibniz 1998 WF, 141), but it 
makes a connection between the concepts of substance and force, a con-
nection that turns out to be of  great importance to his physics. One of his 
earliest attempts at discussing the notion of a substance in light of certain 
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mathematical concepts appears in a 1686 manuscript not published during 
his lifetime, but published  later (in 1846) and then offi  cially titled Discourse 
on Metaphysics.4 So, he had been hard at work for some time (at least eight 
years) before the Acta Eruditorum article using concepts taken from mathe-
matics to more clearly formulate certain components of his metaphysics. A 
look at other texts, especially  those written around the time of the Acta Er-
uditorum article, so around 1695, show that  aft er the Discourse he had made 
advances on his use of mathe matics as a means of making clearer his meta-
physics, which in turn, as emphasized in this chapter, helped to clarify his 
physics. Specifi cally, the advances can be found in the New System and the 
Specimen Dynamicum. For lack of a better term, I  shall call this use of mathe-
matics in metaphysics and physics the “mathematization” of  these two 
sciences. I recognize that this is not the only way this term can be used. I 
propose to look carefully at the mathematization as it emerges in Leibniz’s 
work, focusing specifi cally on how it clarifi es his metaphysical concepts of 
order and harmony, concepts vital to the physics.

Th e Discourse is among the earliest texts in which we fi nd Leibniz dis-
cussing the notion of a substance and what he calls universal order (l’ordre 
universel) in light of certain concepts taken from mathe matics. Th e univer-
sal order, he says, is regulated by the most general of God’s laws (le plus 
generale des loix de Dieu), which, he is clear to assert, are exceptionless (sans 
exception; Discourse, §7; Leibniz 1879 [GP] 4:432). Like every thing in the 
cosmos, the notions of individual substances, which we  shall see are them-
selves laws, are also subject to the most general of God’s laws. Although the 
par tic u lar examples taken from mathe matics do not help make clearer the 
sense in which this order is universal, they do help to make clearer Leibniz’s 
metaphysical conception of order, on which the notion of an individual sub-
stance is built. About order he writes:

Suppose, for example, that someone puts a number of completely haphazard 
points on paper, as do  people who practice the ridicu lous art of geomancy. I 
say that it is pos si ble to fi nd a geometrical line whose notion is constant and 
uniform according to a certain rule, such that the line passes through all the 
points, and in the same order as they  were drawn. And if someone drew a 
continuous line which is sometimes straight, sometimes follows a circle, and 
sometimes of some other kind, it would be pos si ble to fi nd a notion (notion) 
or rule (regle) or equation (equation) common to all the points on this line in 
virtue of which  these same changes would occur. (Discourse §6; GP 4 431)
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Order is inherent in the cosmos. “For regards the universal order,” he says, 
“every thing conforms to it. So much is this true that not only does nothing 
happen in the world which is absolutely irregular, but also that we  can’t even 
imagine such a  thing” (ibid.). Even in the case where points are drawn hap-
hazardly on a piece of paper, an equation nevertheless could be constructed 
that would express a rule that would describe a line that not only connects 
the points but connects them in exactly the order in which they  were drawn. 
Of course, the line represents only an order discoverable in the data ( here, 
the data are the points), its notion or equation understood as that which 
expresses that order as represented by that line.

Th e principal aim of the discussion of the metaphysics of order is to 
make intelligible the concept of order, to make clear its very possibility. Th is 
concept is in turn impor tant to the physics, since one of the aims of the 
physics is to provide an account of the order of  things (as opposed to just an 
order). Th e order dealt with in the physics presupposes the metaphysics of 
order. About his own use of mathe matics in the Discourse, Leibniz writes, “I 
make use of  these comparisons in order to sketch some imperfect picture of 
the divine wisdom, and to say something which might at least raise our minds 
to some sort of conception of what cannot be adequately expressed” (GP 4 
431). In a letter to the Count Ernst von Hessen- Rheinfels, which dealt specifi -
cally with issues in the Discourse, Leibniz says that when conceiving the 
notions of individual substances (the notions understood as “fi nal species”),  
in line with Aquinas, we should not conceive them “physically, but metaphys-
ically or mathematically” (GP 2 131).5  Th ese statements align with what he 
 will say  later in the Acta Eruditorum article, the manuscript sent to Bossuet, 
the New System, the Specimen Dynamicum, and the letter to l’Hospital.

First let us consider some specifi c instances in which he appeals to 
mathe matics in making clearer certain metaphysical concepts. As noted, the 
mathematical concepts of equation and geometrical line  were applied in sec-
tion 6 of the Discourse, where he mentions the order discoverable among the 
points haphazardly drawn on a piece of paper.  Th ese mathematical concepts 
are again used in section 8, in the discussion of the notion of Alexander the 
 Great.6 In a 1690 letter to Arnauld, we get a slightly diff  er ent picture.  Th ere, 
Leibniz says of each substance that it “contains in its nature the law (legem) 
of the continuous progression (seriei) of its own workings and all that has 
happened to it and all that  will happen to it” (GP 2 136).7 Scholars have re-
ferred to this law, the law that determines the series of changes in an indi-
vidual substance over time, as the “law- of- the- series.”8 Leibniz in fact likens 
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the law- of- the- series to what occurs in mathe matics, where a rule or equa-
tion determines a series in numbers (Cover and O’Leary- Hawthorne 1999).9 
We have, then, two competing mathematical “pictures” of an individual sub-
stance and the notion that determines (or expresses) it. Th e fi rst is the pic-
ture of a geometrical line and the equation that determines (or expresses) it; 
the second is the picture of a numerical series and the equation that deter-
mines (or expresses) it. Th ey are related but distinct pictures. To be sure, 
both are meta phors in this context, but they are importantly instrumental 
in Leibniz’s attempts at making clearer his metaphysics. Th ey are part of 
what I earlier called the mathematization of his metaphysics. Th e fi rst pic-
ture is again used in section 13, where this time Leibniz off ers up a circle in 
his conception of the notion of Caesar (Discourse, §13; GP 4 437). Th e second 
picture is used in section 30. Leibniz says  there that God “continually con-
serves and continually produces our being in such a way that our thoughts 
occur spontaneously and freely in the order laid down by the notion of our 
individual substance” (Discourse, §30; GP 4 454). Predicate- talk has been 
replaced with thought- talk, the notion of an individual substance now cast 
as that which  orders a substance’s series of thoughts. And, in yet another 
letter to Arnauld, Leibniz puts both mathematical pictures to use, casting 
the notion as that which  orders the unfolding sequence or series of events 
that constitutes the individual substance while casting this substance’s dura-
tion over time, the unfolding of that history of events, as a geometrical line 
(GP 2 43).10 Although much can be said about the second picture—of indi-
vidual substance as numerical series11— I  shall focus on the fi rst, which de-
picts an individual substance, and the notion that determines it, in terms of 
a geometrical line and the equation that organizes items to “produce” it.

equations and order

In an early manuscript, dated July 11, 1677—so almost a de cade before the 
Discourse— Leibniz instructs us on how to construct an equation of a geo-
metrical line.12 Th e construction is not the point of his discussion, but is 
required for the more sophisticated mathematical analy sis to come. For 
our purpose we need to focus only on the equation’s construction. First, he 
constructs a curve DC on paper, and then constructs, relative to DC, two 
straight lines, AS, which he calls “y,” and AB, perpendicular to AS, which 
he calls “x.”13 In other letters he  will refer to AS as the ordinate and to AB as 
the abscissa.
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Th e equation of DC, he says, is con-
structed by thinking of it as expressing a 
relation between AB and AS. In other 
words, the equation of DC  will produce 
ordered pairs <xn, yn>, which  will be 
points located on DC, where xn is located 
on AB and yn is located on AS. Th us, refer-
ring now to Figure 1, the equation of DC 
 will produce the ordered pairs <x1, y1>, 
<x2, y2>, and so on, which, using AB and 
AS as referents, are points lying on DC. 
 Th ere are a few philosophical issues that 
should be brought to light, so let me pause 
briefl y to do that,  aft er which I  shall return to the specifi cs concerning equa-
tions and geometrical lines.

In 1695, Leibniz tells Foucher, in response to Foucher’s remarks concern-
ing the New System, that  there is an impor tant distinction between ideal 
 things such as lines and points, and real or  actual  things such as corporeal 
substances (bodies), specifi cally off ering the example of a sheep’s body. One 
diff erence between the two kinds of entity is that the sheep’s body, for in-
stance, is a “concrete  thing” or “a mass,” and so is an aggregate of an infi nity 
of bodies (though in being a unifi ed living  thing is an infi nity of bodies or-
ga nized by the notion of this specifi c animal, and is presumably a genuine 
corporeal substance), where its “parts,”  those bodies constituting the aggre-
gate, are prior to the  whole. By contrast, the geometrical line, an ideal  thing, 
is not an aggregate of its “parts.”  Here, the “parts” that he has in mind are in 
fact points. In speaking about how  others have confused ideal and real 
 things, Leibniz says that they have mistakenly thought that “lines are made 
up out of points” (WF 185). So, the “parts”  here are not line segments but 
are, as he puts it, “the primary ele ments in ideal  things,” or points. For ideal 
 things, the  whole is prior to its parts or its ele ments.14 Even though a line is 
not an aggregate of points like the sheep’s body is an aggregate of smaller 
bodies, we can nevertheless conceive a line in terms of “relations which in-
volve eternal truths” (WF 185). If so, what are the relata? According to the 
above account, DC can be understood as a relation of at least two other lines, 
AB and AS. Specifi cally, what the equation of DC shows is precisely how each 
point xn on AB is related to a point yn on AS. Now,  there are an infi nite num-
ber of pos si ble points or “locations” xn on AB. Likewise for AS— there are an 

Figure 1. Algebraic construction of DC 
from AS and AB.
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infi nite number of pos si ble points or “locations” yn on AS. Despite this, the 
equation of DC can take any xn on AB and pair it with a unique yn on AS. 
 Here is a sense, then, in which we can understand how it is that an organ-
izing princi ple  orders or organizes infi nitely many ele ments or, as he calls 
them in the remark to Foucher, “primary ele ments,” which results in the 
“production” of a geometrical line. Likewise, I think, the notion of an indi-
vidual substance S can be understood as ordering or as organ izing infi nitely 
many  simple substances, which results in the “production” of the individual 
substance S over time.

Th is early metaphysical view of an individual substance and the notion 
responsible for organ izing it is, certainly by 1695, extended in some form to 
all bodies. In the New System, for example, Leibniz makes clear the diff er-
ence between the souls or forms of a “superior order” and  those “sunk in 
 matter which,” he says, “in my view are to be found everywhere” (WF 
146).15 Th e former are  those souls that express the notions of individual sub-
stances, the latter are simpler in some sense and of an inferior order. Even 
so, the latter are  simple substances, or what in the New System he refers to as 
“real and animated point(s)” (Leibniz 1695, 145) and  later as “metaphysical 
points” (149). In the Specimen Dynamicum, he casts this animation, or the 
activity of any informed material locus (i.e., animated or metaphysical 
point), in terms of conatus (WF 154–79; GM 6 234–54).16 “Since only force 
and its resultant eff ort exist at any moment,” he says, “and since  every eff ort 
tends in a straight line, it follows that all motion is rectilinear or composed of 
rectilinear motions” (WF 173; GM 6 252) Th e idea, I think, is that each meta-
physical point expresses its own motion, where its motion is rectilinear. 
Th is is one sense in which metaphysical points diff er from mathematical 
points. Such motions are smaller than can be mea sured. In fact, they are 
smaller than can be perceived.17 Yet out of them arises much of the motion 
we observe in the cosmos. Th ough not clear, perhaps  these  will become the 
pe tites perceptions of the New Essays (1703–5)— simple, active, and yet insen-
sible (Leibniz 1991, 49–67; GP 5 41–61).18

Even as late as in the Princi ples of Nature and Grace (1714), Leibniz 
writes:

In nature, every thing is full.  Th ere are  simple substances everywhere, genu-
inely separated one from another by their own actions, which continually 
change their relationships.  Every  simple substance, or individual monad, 
which forms the centre of a composite substance (an animal, for example) 
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and the princi ple of its unity, is surrounded by a mass made up of an infi nity 
of other monads which constitute the body of that central monad; and in ac-
cordance with the ways in which that body is aff ected, the central monad 
represents, as in a kind of centre,  things which are outside it. Th is body is or-
ganic, when it forms a kind of natu ral automaton or machine, which is a 
machine not only in its entirety, but also in its smallest noticeable parts. 
 Because of the plenitude of the world every thing is linked, and  every body 
acts to a greater or lesser extent on  every other body in proportion to dis-
tance, and is aff ected by it in return. It therefore follows that  every monad is 
a living mirror, or a mirror endowed with internal activity, representing the 
universe in accordance with its own point of view, and as orderly as the uni-
verse itself.19 (WF 258–66; GP 6 598–606)

A “central” monad is the one responsible for organ izing a “surrounding 
mass” of an infi nity of monads, this central monad functioning as a princi-
ple of unity. “Each monad,” he says, “together with its own body, makes up a 
living substance. Th us not only is  there life everywhere, together with limbs 
or organs, but  there are infi nite levels of life among monads, some of which 
are dominant over  others to greater or lesser extents” (WF 260). Th is, I think, 
harkens back to the notion of an individual substance as introduced in the 
Discourse. Th e dominant or central monad expresses itself as the organ izing 
princi ple of an individual substance. And although I cannot argue for it 
 here, allow me to at least suggest that Leibniz seems to believe, certainly by 
the time he writes the Specimen Dynamicum, that this is so  whether that 
substance is Alexander the  Great, a red blood cell, the sun, or a piece of iron.

 Th ere appear to be earlier versions of the idea of the central monad and 
the mass of monads surrounding it, as it was introduced in the Princi ples of 
Nature and Grace. One such version can be found in the Specimen Dynami-
cum. Th is earlier version does not make anything of the distinction between 
the living body of Alexander, say, and the corpse of Alexander. Rather, it 
treats of bodies generally, or what Leibniz  will refer to as corporeal sub-
stances. Th is is, I think, compatible with the view in the Discourse.

In a 1686 letter to Arnauld, Leibniz had said that the  human body “or 
the corpse, considered in isolation from the soul, can only improperly be 
called a substance, like a machine, or a heap of stones, which are only beings 
by aggregation” (WF 117).20 So, postmortem, the corpse of Alexander, sup-
posing that “it” is no longer or ga nized by the notion of Alexander, is now a 
heap or aggregate of bodies. Th is aggregate is not an individual substance, 
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for it is now simply a heap of bodies (or corporeal substances) with nothing 
functionally relating or organ izing them into a unifi ed being with a singu-
lar aim. When the notion of Alexander did or ga nize  these bodies, it or ga-
nized them so that  every body (that now constitutes the heap) was then 
directed by the notion  toward some specifi c end and no other. Th is body, the 
ante mortem “living” body of Alexander, was an individual substance—it was 
Alexander the  Great.21 And, it may even have counted as a genuine corporeal 
substance. Th is is suggested when Leibniz writes, “if  there are corporeal sub-
stances, man is not the only one” (WF 147; GP 4 474–75). He has philosophi-
cal reasons for thinking that bodies other than  human bodies are corporeal 
substances. During the period he writes the letter to Arnauld (1686), Leibniz 
holds that a soul is a purely active being.22  Matter is a purely passive medium 
through which a soul acts. A body, then, is the result of a soul’s acting through 
 matter, and in this sense, as a  union, can be understood to be what he calls a 
corporeal substance. If this is right, then it would seem that all bodies must be 
understood as being animate or organic. So, although the corpse postmortem 
is simply an aggregate of an infi nite number of bodies, given that each member 
of the aggregate is a body, then each is “governed” by some organ izing princi-
ple, which if not a soul of the superior order is a soul of the inferior order, the 
kind of soul that God had apparently “sunk” into  matter.

In the Specimen Dynamicum, Leibniz tells us that a body  will possess 
two kinds of active force, namely primitive active force and derivative active 
force. Primitive active force, he says, “is inherent in all corporeal substances 
as such.” It is “none other than the fi rst entelechy—[which] corresponds to 
the soul or substantial form.” Derivative active force “is as it  were the limita-
tion of primitive force brought about by the collision of bodies with each 
other” (WF 155–56; GM 6 234–54). Th is latter kind of force is “the force by 
which bodies actually act and are acted upon by each other” (WF 157). If we 
think of the primitive active force as the corporeal substance’s internal 
princi ple of organ ization, we might in turn think of the derivative active 
force in terms of how this or ga nized body relates to or “harmonizes with” 
all other bodies. Th e derivative force, in other words, requires us to consider 
a body as it relates to all  others.  Here are a few other details. Th e velocity 
(velocitatem) of a body, he says, which in this context seems to be the speed 
of a body (i.e., the body’s change of place over time), “taken together with 
direction is called conatus, while impetus is the product of the mass of a body 
and its velocity (speed)” (WF 157).  Here, we begin to see an application of 
mathe matics that is not meta phorical. Impetus is the product of mass and 
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speed (where, if by velocitatem he means speed in a direction— though it is 
not clear that he means this— then impetus is the product of mass and what 
we would  today recognize as velocity).

Leibniz introduces a number of distinct though related conceptions of 
force— dead force, living force, respective force, individual force, total force, 
partial force, directive or common force, to name several.  Here, I  shall focus 
on only a few. First, consider two bodies, A and B, where both are in mo-
tion. Even though A and B can be understood as bodies themselves, each 
considered in itself a single body, Leibniz also allows them to be understood 
as the aggregates of smaller bodies (and each of  those smaller bodies the ag-
gregates of even smaller bodies, and so on ad infi nitum). Call  those bodies 
constituting A, a1, a2, . . .  an, and  those constituting B, b1, b2, . . .  , bm. Respec-
tive or individual force, he says, is the force by which the bodies constituting 
A, for example, namely a1, a2, . . .  , an, can act on one another; likewise, it is 
the force by which the bodies constituting B, namely b1, b2, . . .  , bm, can act 
on one another. Th e interactions occur internal to the aggregates A and B, 
respectively. By contrast, directive or common force is that force by which 
the aggregate itself, namely A, can act on something  else, for example on B; 
and it is that force by which the aggregate itself, namely B, can act on some-
thing  else, for example on A (WF 158–59). Clearly, when we appeal to direc-
tive or common force, we treat A and B as singular, or we might even say 
unifi ed, entities, where no reference to constituent bodies is made. (Of 
course, A and B could be constituent bodies of some larger body, in which 
case, understood as constituents the force by which they act on one another 
 will be individual force. But I  will ignore this  here.) Th is is consistent 
with what Leibniz says, for example, in a response to Abbé Gouye, where he 
notes that depending on what we choose to explain, we can regard the earth, 
for example, as a point, as it stands to its orbit around the sun, or a ball held 
in one’s hand as a point, as it stands, say, to the circumference of the earth, 
knowing full well that they are spheres and not points.23 Likewise, I think, 
in the Specimen Dynamicum, Leibniz allows himself a way to treat A and B 
as points, or rather, as points in motion, where the motions of A and B are 
represented as geometrical lines.

He explains this within the context of introducing the idea of a body’s 
center of gravity, where this center can be conceived as a (metaphysical) point 
(WF 173). So, when we think of A as a singular body in motion, we conceive 
of A in terms of its center of gravity. Th is comes within the context of intro-
ducing two kinds of motion, which not coincidentally are related to the two 
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kinds of force introduced earlier, individual force and common force. Con-
sider again bodies A and B. Individual motion, he says, is the individual mo-
tions of the bodies constituting A, namely a1, a2, . . .  , an; and, if considering 
B, the individual motions of the bodies constituting B, namely b1, b2, . . .  , bm. 
As was the case with individual force, individual motion occurs internal to 
the aggregates A and B, respectively. Common motion is the motion of A or 
the motion of B, each considered as a center of gravity,  these centers, as I 
said, being understood as (metaphysical) points. Now, we know that the no-
tion of A, for example,  will be an organ izing princi ple, the central monad to 
use the language of the Princi ples of Nature and Grace, that organizes an in-
fi nity of a “surrounding mass” of monads. Th is surrounding mass  will no 
doubt include bodies a1, a2, . . .  , an. Of course, the same holds for the notion 
of B and b1, b2, . . .  , bm. It is worth noting that the notion of a1, for example, 
also has a center of gravity, and each body constituting it also has its own 
center of gravity, and so on ad infi nitum.  Th ere is much to juggle  here. So, 
how are we to conceive all of this? It is one  thing to understand the notion 
of A as an equation that determines a geometrical line, where the line repre-
sents A’s motion, but it is quite another  thing to understand how the notion 
of A works to or ga nize an infi nity of rectilinear motions, which include the 
motions of a1, a2, . . .  , an, and ultimately the distinct conata of an infi nity of 
metaphysical points.

With this sort of challenge in mind, I think, Leibniz develops a mathe-
matical procedure that in fact allows him to solve a system of equations, 
which makes intelligible a harmony among distinct rectilinear motions, so 
that the latter can be shown to converge on a singular point, “forming” a 
body’s center of gravity. Th e procedure deals with how to fi nd what we  today 
call a determinant. Th is  will have wider application, for it  will also help to 
make Leibniz’s conception of universal order clearer. But I  shall focus only 
on how the determinant makes clearer how the bodies constituting A, for 
example, might be conceived as being ordered or or ga nized to form A’s 
center of gravity.

matrices and harmony

Leibniz’s development of the determinant is, as far as I am aware, found in 
only a few texts. Th e fi rst is a 1693 letter to l’Hospital, the second is an un-
titled manuscript written sometime before 1693 (GM 2 238–40).24 He does 
not use the word “determinant.” Th e term came  later. Leibniz begins the 
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description of his new procedure by telling l’Hospital how to understand his 
new notation, starting with a system of linear equations:

10 + 11x + 12y = 0
20 + 21x + 22y = 0
30 + 31x + 32y = 0

 Here, he has set each equal to zero. We are given three equations with two 
unknowns.  Today, mathematicians would say that this system is overdeter-
mined. Th is means that the number of equations is greater than the number 
of variables (unknowns). Th e numbers  here are placeholders, and so are not 
 really numbers, but are, as he calls them, pseudo- numbers (nombre feint; S 
268; GM 2 239).25 Each is a two- digit pseudo- number, each digit represent-
ing impor tant information. For instance, the fi rst digit tells us which linear 
equation a term belongs to. So, the fi rst digit 1 in the pseudo- numbers 10, 
11, and 12 tells us that  these terms belong to the fi rst linear equation; the fi rst 
digit 2 in the pseudo- numbers 20, 21, and 22 tells us that  these terms belong 
to the second linear equation, and so on. Th e second digit tells us which vari-
able, if any, the term is the coeffi  cient of. So, the second digit 0  in the 
pseudo- number 10 tells us that this term is the coeffi  cient of no variable; the 
second digit 1 in the pseudo- number 11 tells us that this term is the coeffi  -
cient of the x variable; the second digit 2 in the pseudo- number 22 tells us 
that this term is the coeffi  cient of the y variable. Th us, the pseudo- number 
32 tells us that this term belongs to the third linear equation and is the coef-
fi cient of the y variable. To emphasize this visually,  later in the letter Leibniz 
writes the fi rst digit larger than the second, the second digit written to look 
a bit like a subscript. So, 10, 11, 12 become 10, 11, 12.

About the pseudo- numbers, he is clear to say that since they are not 
 really numbers, when he instructs us to multiply 10 and 22, for example, 
which he writes “10.22,” we should not multiply  these as though they 
 were numbers. So, we should not arrive at 220 (ibid.).26 Rather, 10 and 22 
are placeholders, 10 standing for the term in the fi rst linear equation that is 
coeffi  cient of no variable, 22 standing for the term in the second linear equa-
tion that is coeffi  cient of the y variable. So, supposing that 3 is in the 10- place 
and 5 in the 22- place, then 10.22 tells us to multiply 3 and 5.  Here, 3 and 5 
are numbers. So, the product is 15. Now, the procedure is geared to elimi-
nate and subsequently reduce the number of variables. Ultimately, “the fi nal 
equation [is] freed from the two unknowns that we wished to eliminate” (S 
269; GM 2 239–40).27
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 Today we do not usually call the terms 10, 20, and 30, that is, terms that 
are the coeffi  cients of no variable, coeffi  cients. Th ey are referred to as con-
stants. But, Leibniz refers to them as coeffi  cients. Although he appears to be 
laying out a single procedure,  there are, I think, several related procedures. 
Th e fi rst can be understood as a method of eliminating unknowns. Working 
the procedure on two of the above linear equations, we can make out a rule 
that yields the same results as Cramer’s rule.28 Gabriel Cramer (1704–52) was 
a student of Johann Bernoulli, and was no stranger to Leibniz’s work. Th e rule 
appears in his Introduction à l’analyse des lignes courbes algébraique (1750).29 
Let’s look at what Leibniz says, considering two of the above linear equations:

10 + 11x + 12y = 0
20 + 21x + 22y = 0

First, let’s move the constants (coeffi  cients with no variables) over to the 
right side of their respective equations. So:

11x + 12y = −10
21x + 22y = −20

Leibniz instructs us to multiply the fi rst equation by the y coeffi  cient of the 
second equation (so, we multiply the terms of the fi rst equation by 22) and 
multiply the second equation by the negative of the coeffi  cient of the y vari-
able of the fi rst equation (so, we multiply the terms of the second equation 
by −12) (S 268; GM 2 239).30 So:

11x.22 + 12y.22 = −10.22
−12.21x + (−12.22y) = −12.–20

We can make this more manageable by cleaning up the terms:

11.22x + 12.22y = −10.22
−12.21x − 12.22y = 12.20

Next, we add the two equations together. (12.22y) and (–12.22y) cancel each 
other out, leaving:

11.22x − 12.21x = 12.20 − 10.22

Now we solve for x:

x = 12.20−10.22
11.22−12.21

Th is quotient is precisely what Cramer’s rule yields.
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Th e rule requires that we fi rst construct the coeffi  cient matrix. Th is is a 
matrix containing only  those coeffi  cients attached to variables. Looking 
back at our original two linear equations,  these are 11, 12, 21, and 22, the 
coeffi  cients of the variables x and y. So:

11  12
21  22

Following Leibniz with what I believe is a slightly diff  er ent procedure (to be 
considered shortly), we cross- multiply  these terms and take the diff erence. 
Specifi cally, we cross- multiply 11 and 22 (so, 11.22) and cross- multiply 12 
and 21 (so, 12.21) and subtract the latter from the former. 11.22 − 12.22 is the 
determinant of this coeffi  cient matrix. Now, to compute the x value, we sub-
stitute in the coeffi  cient matrix the x coeffi  cients with the constants, which 
are Leibniz’s coeffi  cients attached to no variables. In the two linear equa-
tions,  these are −10 and −20. So:

−10  12
−20  22

We now do the same cross- multiplication and take the diff erence: 
−10.22 − (−12.20), which is −10.22 + 12.20, or 12.20 − 10.22. Th is is the deter-
minant of this new matrix. We compute x by dividing the determinant of 
this new matrix by the determinant of our original coeffi  cient matrix:

x = 12.20−10.22
11.22−12.21

which is the quotient that Leibniz’s procedure produces. To be crystal clear, 
I  will apply this to a real case. Consider this system of linear equations.

−6 + 2x + 3y = 0
−15 + 4x + 9y = 0

Now, to make this simpler, following what we did above, move the constants 
over to the right-hand side of their respective equations. So:

2x + 3y = 6
4x + 9y = 15

We can construct the coeffi  cient matrix (which, recall, includes only  those 
terms that are coeffi  cients of variables) and apply Leibniz’s cross- multiplication 
procedure.

2349
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We cross- multiply 2 and 9, and 3 and 4, and take the diff erence (I  will use 
con temporary notation to make this simpler).

(2)(9) − (3)(4) = 18 − 12 = 6

Th e determinant of the coeffi  cient matrix is 6. Now, let’s substitute the con-
stants 6 and 15 for the x coeffi  cients 2 and 4 in the coeffi  cient  matrix:

63159

Cross- multiply and take the diff erence:

(6)(9) − (3)(15) = 54 − 45 = 9

So, the determinant of this new matrix is 9. Now, we compute x by divid-
ing the determinant of this new matrix by the determinant of the original 
coeffi  cient matrix.

x = 9
6
or 3

2

Th e procedure for computing y is similar: substitute the constants for the y 
coeffi  cients of the original coeffi  cient matrix, calculate the determinant of 
this new matrix (the determinant is 6), and divide this determinant by the 
determinant of the original matrix (which is 6).  Here, y = 6/6 or 1. Th e solu-
tion to this system of equations is < 3/2 , 1 >, which tells us that the lines of 
this system intersect at this and no other point.

A second procedure allows Leibniz to deal with what I earlier noted was 
an overdetermined system (more equations than unknowns). Recall Leib-
niz’s original three linear equations. Remove the variables and addition 
signs (following Leibniz, I now adopt his alternate notation. So, 10 is now 10, 
11 is now 11, and so on.):

10  11  12

20  21  22

30  31  32

Th is is an ancestor of a 3 × 3 matrix. Leibniz does not call it this, of course. 
It must be again stressed before getting into the details of the procedure that 
10, 20, 30, which we  today call constants, are included in this matrix. Th is is 
acceptable. But usually when they are included along with coeffi  cients proper 
(terms that are coeffi  cients of variables) mathematicians refer to the matrix 
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as an augmented matrix. Again, this is a distinction that Leibniz does not 
seem to recognize. He treats the constants, as I said, as coeffi  cients.31

 Here is how the procedure goes. Begin with the matrix- like structure:

10  11  12

20  21  22 = 0
30  31  32

A study of the outcome of his procedure suggests that we should multiply 
diagonally in both directions. Sum the products when moving right, sub-
tract the products when moving left . Always begin with terms in the fi rst 
equation. So, moving diagonally (to the right), start with 10, multiply that to 
21, and multiply that to 32. So, 10 . 21 . 32. Go to the next term in the fi rst equa-
tion, 11, and moving diagonally multiply that to 22, and  because we run out 
of terms, move to the fi rst term of the third equation, 30. So, 11 . 22 . 30. Go to 
the last term in the fi rst equation, 12, and since we again run out of terms, 
multiply 12 to the fi rst term of the second equation, 20, moving diagonally 
multiply that to 31. So, 12 . 20 . 31. Since we got them by moving right, we sum 
 these three products: so, (10 . 21 . 32) + (11 . 22 . 30) + (12 . 20 . 31). So far, so good. 
But now we must move diagonally in the other direction. So, again begin 
with 10 and move diagonally this time to the left . Of course, we run out of 
terms, so move to the last term of the second equation, 22, and multiply by 
this, then move diagonally and multiply 31. So, 10 . 22 . 31. Continue with the 
second term of the fi rst equation, 11 (still moving diagonally to the left ), mul-
tiply that to 20, and since we run out of terms, move to the last term of the 
third equation, 32. So, 11 . 20 . 32. Begin now with the last term of the fi rst 
equation, 12, moving diagonally multiply that to 21, and multiply that to 30. 
 Because we got  these by moving left , instead of sums we take the diff erence. 
Putting this together with the prior sums we get:

(10 . 21 . 32) + (11 . 22 . 30) + (12 . 20 . 31) − (10 . 22 . 31) − (11 . 20 . 32) − (12 . 21 . 30) = 0

Ignoring for the moment that Leibniz is including the constants  here, if 
this  were a system of three equations in three unknowns, his procedure in 
fact produces the determinant of the 3 × 3 matrix. What Leibniz notes, how-
ever, is that his procedure  will work for “eliminating the unknowns in any 
number of equations of the fi rst degree, provided that the number of equa-
tions exceeds by one the number of unknowns” (S 269; GM 3 5). So,  here, 
insofar as we have three equations with two unknowns, the procedure, he 
says, should work.32
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Given what he arrives at (I  will state this shortly), he looks to move the last 
three terms (the diff erences) to the right-hand side of the equation, getting:

(10 . 21 . 32) + (11 . 22 . 30) + (12 . 20 . 31) = (10 . 22 . 31) + (11 . 20 . 32) + (12 . 21 . 30)

What Leibniz in fact writes is:

10 . 21 . 32   10 . 22 . 31

11 . 22 . 30 =  11 . 20 . 32

12 . 20 . 31   12 . 21 . 30

 Here, he has ordered the left  and right-hand sides of the equation using his 
matrix- like structures, where the fi rst term of the equation on the left -hand 
side (10 . 21 . 32) is located on top, the second term (11 . 22 . 30) is located 
under neath that, the third under neath that; likewise the fi rst term of the 
equation on the right-hand side (10 . 22 . 31) is located on top, the second term 
is located under neath that, and so on.

What does this tell us? For starters, if the lines determined by the vari-
ous equations of the system intersect, then  there  will be a unique, nontriv-
ial, solution. Th is solution is what Leibniz’s determinant procedure is able to 
fi nd. By nontrivial it is meant that the equations in the system are not sim-
ply equations of the same line, which if so, would entail that  there are an in-
fi nite number of solutions. And, on the fl ipside, if all of the lines did not 
intersect,  there would be no solution. What does this mean? Leibniz’s proce-
dure guarantees that if  there is a solution it  will be a unique <xn, yn> pair that 
solves each equation in the system. Th is  will be the point at which all of the 
lines intersect. And this is precisely what we wanted to understand when 
trying to conceive a body’s center of gravity as a system of rectilinear motions 
converging on a single point. In terms of body A, and the bodies a1, a2, . . .  , 
an that constitute it, given that we possessed the linear equation of a1, the lin-
ear equation of a2, and so on, and given that they form the center of gravity of 
A, which is a single (metaphysical) point, Leibniz shows that we can go some 
way  toward understanding, and even calculating, this convergence. To be 
sure, when A is conceived as a point in motion, the notion of A can be taken 
to be a linear equation. But conceived as an or ga nized collection of bodies, 
the notion of A can be taken to be a system of linear equations, where the 
determinant now helps to make clearer the possibility of A’s center of gravity.

Leibniz employs the above concepts taken from mathe matics to make 
clearer his metaphysical conceptions of order, harmony, and the notion of 
an individual substance. We saw that he uses the concepts of geometrical 
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line, equation, and what is now called the determinant of a matrix. Th e geo-
metrical line and equation found a place in his metaphysics, the two used to 
make clearer his conceptions of order, individual substance, and the notion of 
a substance, and they also look to have found a place in his physics, the two 
used to represent the motion of a body. Th e determinant also looks to have 
found a place in his metaphysics, though admittedly not as prominently as the 
line and equation, this apparatus used to make clearer his conception of har-
mony among individual substances. And it also looks to have found a place in 
his physics, though again admittedly not as prominently as the line and equa-
tion, used to understand how an aggregate of moving bodies might harmonize 
so as to converge on a single (metaphysical) point, forming a body’s center of 
gravity. Using mathe matics to this end, this is one sense in which Leibniz can 
be seen as “mathematizing” the sciences of metaphysics and physics.
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notes

I am greatly indebted to the editors for their suggestions on how to improve 
this chapter, especially Benjamin Hill who offi  cially provided comments at 
the workshop that produced this volume, and, of course, to the participants 
of the workshop. I also owe thanks to Douglas Marshall for his advice. Last, 
I thank Roger Ariew, Richard Arthur, Dan Garber, Geoff  Gorham, and 
Doug Jesseph for extended discussions at the workshop that helped me to 
better understand Leibniz’s view.
 1. Th e original Latin title was: “De prima philosophiae Emendatione, et 
de Notione Substantiae,” which can be found reprinted in Leibniz (1879, 
4:468–70). Hereaft er, I  shall refer to this collection, the philosophical writings, 
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as “GP,” followed by the volume and page number. I am using an En glish 
translation found in Leibniz (1976, 2:432–34).
 2. An En glish translation of this manuscript can be found in Leibniz 
(1998, 139–42). Th e original manuscript and correspondence can be found 
in Bossuet (1912).
 3. Th is letter is No. 1. It is dated November or December 27, 1694. Th e 
quote is taken from p. 258: “Ma metaphysique est toute mathematique pour 
dire ainsi ou la pourroit devenir.”
 4. Th e manuscript is found as an untitled work in GP 4 427–63. Th e 
section headings are found in a letter to the Count Ernst von Hessen- 
Rheinfels, GP 2 12–14. An En glish translation can be found in Leibniz (1931, 
68–72). When not my own, I am using En glish translations included in 
WF, 54–93. I am also relying on the translation found in Leibniz (1991).
 5. Leibniz to Count Ernst von Hessen- Rheinfels (1687 or 1688). Th is is 
letter 24, in Leibniz (1931, 238).
 6. Discourse, §8; GP 4 433. Leibniz had in fact sent the Discourse to the 
Count and to Arnauld, both of whom corresponded with Leibniz and with 
one another about it.
 7. Leibniz to Arnauld, March 23, 1690. Th is was part of Arnauld’s re-
sponse to the Discourse. Th is is letter 26, in Leibniz (1931, 244).
 8. See, for example, Cover and O’Leary- Hawthorne (1999). I am in-
debted to Richard Arthur for bringing this to my attention. I am borrowing 
the phrase “law- of- the- series” from Cover and O’Leary-Hawthorne.
 9. Cover and O’Leary- Hawthorne (1999) quote Leibniz as follows: “the 
essence of substances consists in . . .  the law of the sequence of changes, as in 
the nature of the series in numbers” (220). Th is comes from Leibniz (1923).
 10. Leibniz to Arnauld, May 1686. Th is is letter 8.
 11. Cover and O’Leary- Hawthorne (1999) off er an excellent discussion 
of this picture. It is worth noting, I think, that they actually never take Leib-
niz up on his use of mathe matics in this context. So, their analy sis is solely 
conceptual or logical.
 12. Th e manuscript is included in Leibniz (2005).
 13.  Here I alter the orientation of his drawing (I spin it 90 degrees coun-
terclockwise) so that AS and AB align with the more familiar y- axis and x- 
axis as we position them  today. Leibniz actually includes two other lines: 
parallel to AS he puts BC and parallel to AB he puts SC, making a rectangle 
with the four lines. I only require the simpler drawing to make my point. 
Th e inclusion of x1, x2, y1, y2 along with the dashed lines is my own.



 leibn iz on or der a n d the notion of su bsta nce 247

 14.  Here, Leibniz casts points as “extremities” of lines. Th is is tricky, for 
it is easy to think that he means that they are simply the “ends” or the “tips,” 
so to speak, of a fi nite line segment. But this would be wrong. Rather, in the 
discussion he speaks of ratios, for example 1/2 and 1/4, where, I take it, he 
means the following: Assume line PQ. Divide PQ at R. Th e ratio of PRPQ is 
a point on PQ. Call this point a1. Now divide PQ at S, where PS ≠ PR. Th e 
ratio of PSPQ is a point on PQ. Call this point a2. Since PR ≠ PS, a1 ≠ a2. We 
construct points, the ele ments, out of the  whole, the line. In this sense, the 
 whole is prior to its “parts.” As I note in the body of the paper, I do not read 
“parts” as denoting smaller line segments.
 15. I cite the En glish translation in WF 143–52. Th e quote is from WF 
146. GP 4 477–87 has a revised draft . Th e brackets refl ect the additions.
 16. From Specimen Dynamicum: An Essay in Dynamics, Showing the 
Wonderful Laws of Nature Concerning Bodily Forces and Th eir Interactions, 
and Tracing Th em to Th eir  Causes (1695).
 17. For an excellent discussion of the issues surrounding infi nitesimals, 
incomparably small ele ments, and conatus, which I  here suggest by the ap-
peal to metaphysical points, see Jesseph (1998, 6–40).
 18. From the preface to New Essays. Th e remark about insensible per-
ceptions is made in AG 56.
 19. From Princi ples of Nature and Grace Based on Reason (1714), a ver-
sion of which forms sections 61–62 of the Monadology.
 20. Leibniz to Arnauld, November 28/December 8, 1686. Th is, it seems 
to me, is aligned with what Aristotle says in the Categories.  Th ere, he speaks 
of a corpse as being a man, but only homonymously so.
 21. Alexander’s soul may appear to perish, since it is no longer per-
ceived as organ izing bodies existing at a level of normal  human percep-
tion. Th is may be what  human beings typically call “death.” His notion, 
however, could continue to operate, but now over bodies that are insensible 
to  human beings. So, Alexander’s vis i ble corpse does not count as evidence 
of the death (or annihilation) of Alexander’s soul or its activity in the cosmos. 
About this, see what Leibniz says in the New System (WF 147; GP 4 474–75).
 22. See, for example, Mercer (2001). For detailed studies of Leibniz’s 
views on substance as they evolve over his  career, see Leibniz (1994; 2009).
 23. I am indebted to Douglas Jesseph’s paper for this passage (1998, 30). 
 Th ere, Jesseph quotes the passage from the Journal, printed in GM 6 95–96.
 24. Leibniz to l’Hospital, April  28, 1693. An En glish translation of a 
portion of the letter is in Leibniz (1959, 267–69). Th e untitled manuscript 
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can be found in GM 3 5–6. An En glish translation of a portion of the man-
uscript can be found in S (269–70). I rely on Smith’s dating of the untitled 
manuscript.
 25. 1693 letter to l’Hospital.
 26. Th at is, 10.22 ≠ 220. Ibid.
 27. Ibid.
 28. I show some of this in Smith (2010, 172–73).
 29. Carl Boyer (1985) notes that this rule appears earlier in Colin Maclau-
rin’s 1748 Treatise of Algebra, published two years before Cramer’s book.
 30. Letter to l’Hospital.
 31. In Smith (2010, 170–75), I discuss some of this material, though I 
ignore the pres ent concern over coeffi  cients proper, constants, matrices, 
and augmented matrices. What I say  there is essentially correct, though the 
procedure I work out is mostly only suggested by what  little Leibniz says, 
though it is consistent with it. I also show how Leibniz’s letter to l’Hospital 
prefi gures Cramer’s rule. Th is seems to me still to be essentially correct. Fi-
nally, since I am confessing  things, I overstate in Smith (2010, 175) what 
Leibniz actually shows in this letter— specifi cally, I say that he arrives at a 
par tic u lar quotient (which is a quotient that Cramer’s rule yields). While it 
is true that the procedure Leibniz describes  will yield the quotient, he does 
not actually produce that quotient in the letter.
 32. Some of what Leibniz says in  these texts suggests that he was toy-
ing with what  today we think of as cofactors and minors. But this is 
murky. Even so, given Leibniz’s 3 × 3 matrix we could eliminate the col-
umn containing the constants, or coeffi  cients with no variable, by way of 
an expansion by cofactors. Th is may be what he means when he says, “Make 
all combinations of the coeffi  cients of the letters, in such a way that more 
than one coeffi  cient of the same unknown and of the same equation never 
appear together.  Th ese combinations, which are to be given signs [plus or 
minus] in accordance with the law which  will soon be stated, are placed 
together, and the result set equal to zero  will give an equation lacking all the 
unknowns” (S 269; GM 3 5). But restrictions on length of chapters in this 
volume prohibit me from pursuing that  here.
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descartes: “in the same style as the rest”

René Descartes writes to Marin Mersenne in a letter of 1639 that if his 
account of the circulation of blood, among other  things, “turns out to be false, 
then the rest of my philosophy is entirely worthless” (1964–76, AT 2 501). He 
does not say that if his account is wrong then his circulation theory, or his 
medicine, or his physiology  will be worthless. He says that his philosophy 
depends on the correctness of his explanation of cardiac motion. Th is is, 
indeed, putting quite a lot of weight on a question that appears to be of only 
the remotest concern to phi los o phers  today— there is, for example, no spe-
cialization in the philosophy of cardiology— and at the very least it should 
motivate any historian of early modern philosophy to reconsider the way he 
or she conceptualizes the philosophical proj ect, and to strive to study this 
proj ect in its early modern expression in a way that is adequate to the self- 
conception of its leading exponents. For Descartes, the medical philosophy 
aimed to prolong the  human body’s life, and at the base of any  human or 
animal body’s life is the continuation of certain vital pro cesses, most partic-
ularly respiration, digestion, and circulation.  Th ese, in turn, must be under-
stood if they are to be infl uenced by  human art and intervention. Th e proj ect 
of understanding, in turn, for Descartes, means fi rst and foremost, as he put 
it in the 1637 Discourse on Method, explaining a given domain of nature “in 
the same style as the rest”1 (1964–76, AT 6 45). But what style is this?

Many commentators would be tempted to call it ‘the mechanical style,’ 
and to see this as synonymous with ‘the mathematical,’ but  these categories 
are rightly being subjected to a certain degree of scholarly revision in recent 
scholarship, including the pres ent volume. Roger Ariew, in chapter 4, em-
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phasizes the polysemy of the notion of mathematization in the early mod-
ern period: diff  er ent thinkers meant diff  er ent  things when they asserted of 
their own proj ects that  these  were mathematical, or that they involved math-
ematization of domains of nature that previously had not been given such 
a treatment. According to Ariew, the historiographical approach to early 
modern natu ral philosophy that prevailed in the twentieth  century, in par-
tic u lar in the work of Burtt (1925), Dijksterhuis (1961), and Koyré (1957) 
(hereaft er, collectively, BDK), is fundamentally misguided. On the new, re-
visionist approach,  there has been a basic confl ation of mechanization and 
mathematization. Certainly, if we understand the latter notion as involving 
the substitution of “mathematical idealities for the concrete  things of the 
intuitively given surrounding world,”2 then  there is indeed  little primary- 
textual evidence that Descartes and his successors  were intent on mathe-
matizing the natu ral world in this way. Th e twentieth- century consensus on 
this point is now rightly in the course of being displaced. But we may also 
understand by ‘mathematization’ another sort of endeavor: that of account-
ing quantitatively for natu ral pro cesses that had previously been dealt with 
in strictly qualitative terms. Typically, such a quantitative approach would 
be elaborated in terms of the mass, fi gure, and motion of the particles in-
volved in the pro cess: particles that could be described in terms of their size, 
weight, shape, and speed. Th is description would then, it was hoped, render 
large- scale natu ral pro cesses comprehensible.

It is plain that such a description was part of what Descartes had in mind 
when he expressed the desire to explain physiological pro cesses “in the same 
manner as the rest.” And while it may be the case that Descartes himself did 
not think of this sort of explanation as part of a mathematization of nature, 
 there can be no doubt that subsequent physiologists, many of them working 
 under the banner of Cartesianism, did so conceive it. Lorenzo Bellini and 
Niels Stensen, certainly, to cite two prominent examples, thought of their 
own iatromechanical proj ects as a sort of mathematization of medicine, and 
moreover the model of such mathematizing was geometry. Th is much is 
clear from the very title of a work such as Steno’s Elementorum myologiae 
specimen seu Musculi descriptio geometrica [Specimen of the Ele ments of My-
ology, or, A Geometrical Description of the Muscle] of 1667 (see Kardel 1994; 
also, e.g., Bellini 1662). And Leibniz, for his part, who early in his  career 
praised both Bellini and Stensen for “mathematizing in medicine” (Smith 
2011, 84) evidently takes ‘mechanical’ and ‘mathematical’ as synonyms, at 
least in their application to the study of physiological pro cesses. Th us he 
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writes to Arnauld: “One must always explain nature mathematically and 
mechanically, provided that one understands that the very princi ples or laws 
of mechanics of force do not depend on mathe matics alone, but on certain 
metaphysical reasons (Leibniz 1875–90, G 2 58).3 In sum, Ariew is certainly 
right to insist that we must not confl ate mathematization and mechaniza-
tion in Descartes himself, and it is also certainly wrong to suppose that 
mathematizing iatromechanists would think of mathe matics as an idealiz-
ing abstraction away from bodies. And yet, the supposition that the approach 
to mechanical nature as something mathematically tractable, the approach 
more geometrico, lay at the heart of the mechanical proj ect is by no means 
an invention of mid- twentieth- century historiography. It goes back to the 
very self- understanding of early modern mechanical phi los o phers them-
selves. Th is is, at least, the conclusion we must draw if we limit our consid-
eration of early modern mechanical philosophy to iatromechanism, or to 
the medical- scientifi c and physiological study of living bodies. In this res-
pect, as in no doubt many  others, it is crucial for the new, post- BDK histori-
ography to consider the life sciences alongside the other domains of natu ral 
philosophy, in order to arrive at a suffi  ciently clear picture of just how much 
from the BDK thesis needs to be thrown out, and how much deserves to be 
retained.

Stensen, Bellini, and  others  were hoping to extend what they saw as the 
recent successes of ‘mathematizing’ in the study of the nonliving world. But 
it would be a  mistake to suppose that this order of operations, this attempt 
at an extension of mathematical methods (again, not necessarily in the BDK 
sense, but simply in the sense of quantitative tractability) from celestial me-
chanics and ballistics to medicine, amounted to a movement from the most 
pressing to the less pressing of  matters, or that the foundational sciences 
 were taken care of fi rst, and then the less impor tant sciences  were followed 
up by the arrière- garde. It would be more correct to say, in fact, that from 
the perspective of early modern thinkers themselves, physics was mathema-
tized fi rst only  because physics is relatively easy compared to physiology 
and medicine. Th e fact that its objects more readily submit to a mathemati-
cal treatment than the parts of living bodies may have meant that lessons 
could be extended from physics to the life sciences, but this did not entail 
that physics was seen as somehow more fundamental. Quite the contrary, 
its mathematization appears to have been seen as a sort of preliminary skir-
mish in the build-up to the  great  battle, whose victory would have been the 
crowning achievement of the new philosophy, namely, the mathematization 
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of medicine. It is not that the mathematization of medicine would provide a 
peripheral confi rmation of the robustness of an explanatory approach al-
ready thoroughly established in a more foundational science, but rather 
that the failure to mathematize medicine, the inability to account for it “in 
the same style as the rest,” would amount to a falsifi cation of the entire en-
deavor, indeed of ‘philosophy’ as Descartes understands it.

But alas, by the end of the  century, physics  will have its Principia math-
ematica, while the philosophical treatment of living bodies, by contrast,  will 
have fragmented into a sort of small- ‘e’ empiricist agnosticism, on the one 
hand, and a fairly reactionary vitalism on the other, which took the phenom-
ena of life as in princi ple unsusceptible to a treatment “in the same style as 
the rest.” By the end of the following  century, we would fi nd Kant declaring 
that in princi ple  there could never be, as he put it, “a Newton of the blade of 
grass” (G 5 400, 18ff ). What happened? Why did this program fail? And 
what can its failure show us about the proj ect of modern natu ral philosophy 
as a  whole? In this chapter, I would like to argue that the philosophy of G. W. 
Leibniz provides signifi cant insight into the fate of the early modern proj ect 
of mathematizing living nature. While early on he had hoped to see math-
ematical methods extended to the analy sis of the composition of organic 
bodies, and while in his mature analy sis of  these bodies the idea of an  actual 
infi nity plays a central role, nonetheless, for reasons I  will proceed to spell 
out, Leibniz’s mature theory of living bodies, according to which they con-
sist in infi nitely many bodies in hierarchical relations to one another ad in-
fi nitum, cannot be considered a victory for mathematization. Leibniz was 
no Newton for the blade of grass.

leibniz: “c’est tout comme ici”

 Th ere is an in ter est ing, if at fi rst not obvious, connection between this last 
desideratum of Descartes’ philosophical program, on the one hand, and, on 
the other, the so- called Harlequin princi ple, as stated a few de cades  later by 
Leibniz: c’est tout comme ici, “it’s all as it is  here.” For both Descartes and 
Leibniz, it is a core conviction that diff  er ent domains of nature must not be 
seen as requiring diff  er ent sorts of explanation. Concretely, this means both 
a collapse of the Aristotelian separation between the superlunar and the sub-
lunar, as well as of that between the living and the nonliving. Planets, pro-
jectiles, and muscles must all be subjected to the same sort of treatment 
as the  others. Th e implications of the Harlequin princi ple for Leibniz are 
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however rather diff  er ent from  those of Descartes’ desire to explain every-
thing “in the same style as the rest.” Leibniz, in fact, appears to be draw-
ing this princi ple from a few, likely unexpected, sources, and it is worthwhile 
to trace his version of the princi ple back to them, in order to gain a clearer 
picture of what he himself intends.

Harlequin— ‘Arlequin’ or ‘Arlecchino’—is a stock character of the Ital-
ian and French commedia dell’arte traditions. He is known, in some of his 
multiple iterations, for wearing a many- layered costume that makes it im-
possible to disrobe him. Th us Leibniz describes his conception of the infi -
nite folds of organic bodies in the New Essays of 1704 as follows: “It is . . .  like 
Harlequin, whom they wanted to disrobe on stage, but could never arrive at 
the end,  because he had I  don’t know how many clothes the ones on top of 
the  others: although  these replications of organic bodies to infi nity, which 
are in animals, are neither so similar to one another nor as layered upon one 
another as the clothes, the artifi ce of nature being of a completely diff  er ent 
subtility” (G 5 309).4

In a letter to Damaris Masham of the same year, Leibniz makes oblique 
reference to Anne Mauduit Nolant de Fatouville’s Arlequin, Empereur dans 
la lune, a comedy that fi rst appeared in 1683 or 1684 (G 3 343).5 He recalls 
the expression of a view according to which “everywhere and all the time, 
every thing’s the same as  here.” In fact, in this play, the phrase, “c’est tout 
comme ici” is repeated several times by diff  er ent characters (the Doctor, Col-
ombine, Isabelle), listening to Arlequin’s description of life on the moon 
and affi  rming that this is “just like” life on Earth. Th e conclusion of the play 
consists in a resounding repetition of this phrase by the entire cast, yet this is 
in response to Arlequin’s description of the daily habits of lunar  women—
they wake up past noon, take three hours to get dressed, travel to the opera 
in carriages— and it has nothing at all to do with the structure of the  matter 
making up the lunar world or anything of the sort.6

What, then, is the connection between the two references to Harlequin 
in Leibniz— the reference to the character’s onionlike costume, on the one 
hand, and the reference to the “tout comme ici” princi ple on the other? In 
order to answer this question, we need to take stock of the full range of Leib-
niz’s interest in his era’s science fi ction. In the New Essays, in addition to refer-
encing Nolant de Fatouville’s fantasy about the emperor of the moon, Leibniz 
also cites another work describing travel through the solar system, and indeed 
one that shares many familiar themes from Nolant de Fatouville’s work: 
Cyrano de Bergerac’s Histoire comique des États et Empires du Soleil, fi rst 



 leibn iz’s  h a r lequ ina de 255

published in 1662 as a sequel to his Histoire comique des États et Empires de 
la Lune, published posthumously in 1655.7 “I am also of the opinion,” Leib-
niz writes, “that genii apperceive  things in a way that has some relationship 
with ours, even if they had that curious gift  that the imaginative Cyrano 
attributes to some animated natures in the Sun, composed of an infi nity of 
small birds that, moving according to the command of the dominant soul, 
form bodies of  every kind” (G 5 204).8 In the tale of the voyage to the sun, 
Cyrano’s narrator describes several encounters with composite beings. For 
example, he describes an encounter with a miniature man who emerges out 
of a pomegranate that has fallen from a tree. Th is man identifi es himself as 
“the king of all the  people who constitute that tree” from which the fruit has 
just fallen (de Bergerac 1858, 195). Soon  aft er this, “all the fruits, all the fl ow-
ers, all the leaves, all the branches, and fi  nally the entire tree, fragmented 
into  little men: seeing, sensing, and walking” (196). And soon the men begin 
to dance: “As the dance grew tighter, the dancers blurred into a much more 
rapid and indiscriminate stampede: it seemed that the purpose of the Ballet 
was to represent an enormous  Giant; for by dint of coming together and 
augmenting the speed of their movements, they mixed so closely that I now 
perceived only one  great Colossus . . .  Th is  human mass, previously bound-
less, reduced itself  little by  little so as to form a young Man, of an average 
size” (198–99).

Th e  little king proceeds to jump into the composite man’s mouth, and, 
in the role of ‘dominant monad,’ proceeds to give the composite golem its 
princi ple of unity: “All this mass of  little men did not, before now, give any 
sign of life; but as soon as it had swallowed its  little King, it no longer felt 
itself to be anything but one” (ibid.).9

In his earlier work, describing a no less delirious lunar voyage, Cyrano’s 
narrator defends heliocentrism, but does so on the grounds that “all bodies 
that are in Nature need this radical fi re,” and therefore it must be “at the 
heart of this Kingdom, so as to be able to promptly satisfy the needs of each 
part” (de Bergerac 1858, 35). He compares this placement to the location 
of an animal’s genital organs at the center of the body, or to “the pits at the 
center of their fruit; and just as the onion conserves,  under the protec-
tion of a hundred skins that surround it, the precious germ, where ten mil-
lion  others  will draw their essence; for this apple is a  little universe of its 
own” (ibid.).

Assuming that Leibniz in fact read and was infl uenced by both Cyrano 
de Bergerac and Nolant de Fatouville, as he reports in the New Essays, we 
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are now in a position to see the connection between the two versions of the 
Harlequin princi ple: every thing is as it is  here, which is to say, fi rst of all, 
that  there is no need to invoke a diff  er ent sort of explanation for superlunar 
bodies as for sublunar bodies. Second, the sort of explanations proff ered for 
macroscopic bodies  will be the same as that for microscopic ones; scale is of 
no relevance in determining the appropriate explanation for the structure and 
motion of a given portion of the natu ral world. Fi nally, the structure that 
characterizes  every body in the natu ral world is one of bodily individuals 
that are in turn capable of constituting greater composite bodily individu-
als. Individual bodily beings are si mul ta neously worlds apart, but are also, 
at the same time and no less, implicated in the constitution of greater bodily 
beings. A given bodily being can ‘fragment,’ but no being can pass from a 
bodily state into a nonbodily one, nor indeed from bodily existence to non-
existence tout court, just as the king of the  people formerly constituting the 
tree falls away in the form of a fruit and then emerges from the fruit as a 
 little man.

For Leibniz, the need to account for every thing “in the same manner as 
the rest” is articulated in terms of the tout comme ici princi ple. In turn, the 
way the world is structured ici, in the sublunar sphere, and more particu-
larly in what we would call the ‘biosphere’— and indeed even more par-
ticularly in the plant or animal body—is unlike anything Descartes was 
prepared to imagine. For Leibniz, the world is conceptualized on the model 
of the animal body, which is in turn conceptualized as an infi nitely struc-
tured assemblage of infi nitely many constituents— corporeal substances, all 
of which stand in hierarchical relations of domination and subordination 
relative to all  others. Leibniz does not look at the animal body and hope that 
it might be explained in the same manner as the planets and projectiles; 
rather, he looks at the planets and projectiles and asserts that they are to be 
explained in the same manner as the animal body. What remains constant 
from Descartes to Leibniz, then, is the desire to explain the entire world in 
a unifi ed way, and to do so, in some broad sense, ‘mathematically’; what 
changes, though, are both the domain of nature from which the explanation 
is to be drawn, as well as the par tic u lar branch of mathe matics that is looked 
to as a potential source of answers. Th e evolution is from the explanation of 
every thing on the model of inanimate bodies, and by appeal to geometry, to 
the explanation of every thing on the model of animate bodies, and by ap-
peal to infi nity.
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mathematical and bodily infi nity

On Leibniz’s mature view, already clearly in evidence by the 1704 New Es-
says, every thing is as it is  here, and moreover  here it consists in infi nitely 
structured or ‘folded’ body. For Leibniz, this infi nite structure is synony-
mous with ‘organism,’ understood not as a count noun ( there is no talk of 
‘organisms’), but as an abstract noun characterizing all natu ral bodies. To 
be characterized by organism is to be infi nitely structured, which, to follow 
out Leibniz’s trail of synonyms still further, is to be a ‘divine machine.’ Th us 
infi nity lies at the very heart of Leibniz’s mature account of the natu ral 
world, and in this res pect he could not diff er more sharply from Descartes. 
What it is for each phi los o pher to off er an account of any given segment of 
nature “in the same style as the rest,” then,  will be very diff  er ent in each case.

As Ohad Nachtomy rightly notes, “Descartes delineated an irreconcil-
able gap between the infi nite creator and its fi nite creatures, suggesting that 
it would be not only cognitively impossible but also morally and theologi-
cally wrong for us to investigate the infi nite” (Nachtomy 2014, 9–28). In this 
connection, Descartes is hewing far more closely to the traditional under-
standing of infi nity, among the vast majority of phi los o phers up  until his 
time. Aristotle eff ectively curtailed serious commitment to an  actual infi nity 
with his well- known observation that “nature avoids what is infi nite,  because 
the infi nity lacks completion and fi nality, whereas this is what nature always 
seeks” (Aristotle 1943, 7; 1.1.715b15). Leibniz was emboldened in his embrace 
of an  actual infi nity in large part by the innovative, imaginative, and fairly 
radical philosophical speculation of pre de ces sors such as Henry More and 
Giordano Bruno. But, more impor tant still, he was able to incorporate 
infi nity into his philosophy in a very concrete, and not merely speculative 
way, as a result of impor tant attainments of his in pure mathe matics. As 
Nachtomy well explains: “Leibniz discovered a rational method to treat in-
fi nity in mathe matics. By translating infi nitesimal quantities into fi nite 
ones, arguing that they can be regarded as variables, smaller or larger than 
any assignable quantity, he showed that infi nitesimals could in fact be used 
in calculations. Leibniz’s sophisticated approach (evident in his early work 
in mathe matics) certainly contributed to his applying infi nity in other do-
mains of his philosophy as well. For, given this approach, one could feel 
 free using infi nity without falling into paradox” (Nachtomy 2014, 12). Lib-
erated from fear of paradox, Leibniz is also freed up to develop what might 
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be considered a highly counterintuitive account of the structure of the natu-
ral world, as consisting in infi nitely structured bodies, which result from 
the conspiracy of infi nitely many subordinate bodies, yet cannot be said to 
be made up out of  these subordinate bodies, since  these subordinate bodies 
have exactly the same sort of structure as the bodies they in turn serve to 
constitute, and so on ad infi nitum. Indeed in the end  there simply is no rock- 
bottom level of the physical world that serves to make up composite entities 
in the way that bricks make up a  house. Divine machines— and in the end 
such machines are all  there is— are divine precisely to the extent that they 
cannot be analyzed into fundamental constituent parts; which is in the end 
just another way of saying that they cannot be analyzed away, and are there-
fore immortal.

Leibniz repeats this account of the structure of natu ral bodies numer-
ous times, along with its vari ous corollaries such as that of the immortality 
of corporeal substance. Th us in a letter to Malebranche of 1679, Leibniz 
writes: “ Th ere is even room to fear that  there are no ele ments at all, every-
thing being eff ectively divided to infi nity in organic bodies. For if  these mi-
croscopic animals are in turn composed of animals or plants or other 
heterogeneous bodies, and so on to infi nity, it is apparent, that  there would 
not be any ele ments” (Smith 2011, 235).10 In a note on a letter of Michelan-
gelo Fardella from 1690, amply discussed in a recent study by Dan Garber 
(2009), we fi nd a similar expression of the commitment to the infi nite struc-
ture of  matter, though now expressed by explicit analogy to geometry: “ Th ere 
are substances everywhere in  matter, just as points are everywhere in a 
line . . .  Just as  there is no portion of a line in which  there is not an infi nite 
number of points,  there is no portion of  matter which does not contain an 
infi nite number of substances” (AG 1989, 105). Consider, fi  nally, this passage 
from a text entitled “On Body and Force, against the Cartesians,” written 
just two years before the New Essays, in which Leibniz nicely brings to-
gether the infi nite structure of the organic body with the divinity and im-
mortality of the corporeal substance: “Moreover, a natu ral machine has the 
 great advantage over an artifi cial machine, that, displaying the mark of an 
infi nite creator, it is made up of an infi nity of entangled organs. And thus, a 
natu ral machine can never be absolutely destroyed just as it can never abso-
lutely begin, but it only decreases or increases, enfolds or unfolds, always 
preserving in itself some degree of life or, if you prefer, some degree of prim-
itive activity” (AG 253). Th is is Leibniz’s mature account of the structure 
and activity of natu ral bodies in general, and it is at the same time his ac-
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count of living bodies, since again, for Leibniz,  there is no body that is not 
living: to be alive just is to have organic structure, which is to say to consist 
in individual corporeal substances standing in relations  toward one another 
of nestedness ad infi nitum, and  there simply are no bodies that are not like 
this. Th is means that in the fi nal analy sis it is the study of the living body, 
and in  actual practice the study of the  human body, that  will serve as the 
model and guide for the study of nature in general. Sometimes, the disci-
pline that sees to this study is described as ‘physiology,’ sometimes as ‘ani-
mal economy.’ But most oft en it is called, simply, ‘medicine.’

“mathematizing in medicine”

We have seen that Leibniz, like Descartes, wishes to explain every thing in 
nature in the same way, and we have seen that for Leibniz this way  will come 
to involve the application of infi nity to the account of the structure of natu-
ral bodies.11 For Leibniz, moreover, on the fi nal analy sis all natu ral bodies 
are living bodies, in the sense that  there is nothing that is not a divine ma-
chine, nothing that is not characterized by organism. We have also seen that 
Leibniz and many of his contemporaries suppose— notwithstanding any re-
visions that need to be made to the BDK thesis as applied to Descartes— 
that it is a desirable  thing to ‘mathematize nature,’ that is, to render all 
natu ral bodies tractable by subjecting them to quantitative methods of 
analy sis, and to suppose that what is causing the qualitative features of liv-
ing bodies are in the end the mass, shape, and motion of  those bodies’ 
microanatomical constituents. Th e question now arises, though,  whether 
Leibniz would himself consider his analy sis of living bodies in terms of their 
infi nite structure a case of successful “mathematizing in medicine.”

Th e young Leibniz is very optimistic about the proj ect of mathematiz-
ing medicine, and, as we have seen, he cites Stensen and Bellini as his mod-
els for this undertaking. In the Directiones ad rem medicam pertinentes of 
1671, he anticipates that medicine  will eventually be exhaustively explicable 
in terms of the mass, fi gure, and motion of bodily particles. Yet  later on Leib-
niz  will come to see the proj ect as only partially realizable. As he writes to 
Michelotti in a letter on animal secretion of 1715: “ Th ere may be many me-
chanical  causes that explain secretion. I suspect however that one should 
sooner explain the  thing in terms of physical  causes. Even if in the fi nal 
analy sis all physical  causes lead back to mechanical  causes, nonetheless I am 
in the habit of calling ‘physical’  those  causes of which the mechanism is 
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hidden” (Leibniz 1768).  Here, then, ‘physical’ contrasts with ‘mechanical’ to 
the extent that the latter lends itself to immediate mathematization, given 
the state of our knowledge and our capacity for observation, whereas physi-
cal explanation remains avowedly hy po thet i cal.

Early on, for Leibniz, it had been the work of Steno that served as a model 
for the pos si ble mathematization of medicine and related fi elds of investiga-
tion. Steno had argued, most importantly in his Elementorum myologiae 
specimen seu Musculi descriptio geometrica of 1667, that the nerves and mus-
cles alike contract and expand without the infl ux or effl  ux of any new mate-
rial. For the Danish physician, this argument was of par tic u lar importance 
for the broader argument against the animal spirits playing a role in animal 
motion. Steno is eff ectively attempting to demonstrate the mechanism of 
contraction more geometrico, namely, by showing how the shortening of the 
fi bers that constitute the muscles is alone suffi  cient to account for muscular 
contraction.

Ultimately, Leibniz  will fi nd the Stenonian account inadequate, and  will 
come to believe that the sort of mechanical explanation that should be hy-
pothesized in accounting for the motion of the muscles  will be one that at-
tributes an impor tant role to elasticity. Th e elasticity of the inner parts is 
conceived as a sort of force (vis elastica) that keeps the body in motion 
through countless imperceptible vibrations in a manner analogous to the 
“vibrations” of perceptions that endure in the soul as memories. As Leibniz 
writes in a letter to Bernoulli of May 6, 1712: “In organic beings many  things 
seem to consist in perpetual, imperceptible vibrations, which, when we per-
ceive them to be at rest, are in fact being held back by contrary vibrations. 
Th us in truth we are led back to an elastic force. I suspect that memory itself 
consists in the endurance of vibrations. Th us  there does not appear to be any 
use for a fl uid that goes by the name of animal spirits,  unless it is traced back 
to the reason itself of the elastic force” (G 3.2 884–85). Th is strategy of ex-
plaining the dilation and contraction of the parts of the body in terms of an 
eff ervescence that brings about a sort of vibration far antedates Leibniz’s cor-
respondence with Bernoulli and seems to be traceable most directly to the 
infl uence of Boyle’s New Experiments Physico- Mechanicall, touching the 
Spring of the Air, and its Eff ects of 1660. Leibniz writes as early as the Corpus 
hominis of the mid-1680s:

While it is granted that the seat of eff ervescence is in the heart, it nonethe-
less is easily communicated to the  whole body by the blood vessels, just as 
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[when] we attempt to heat an enormous cask of wine with a small fi re, if the 
fi re be applied through a small copper utensil, connected with the vessel 
through a tube. Seeing moreover that in any ebullition  there is an excessive 
dilatation, the vapor is nevertheless not expelled, but rather it is necessary 
that it in turn be pushed along, whence arises respiration, indeed in all ex-
ceedingly  great effi  cient [ causes]  there is a certain reciprocation of restitu-
tions such as we note in oscillating pendula, or in vibrating chords. (Smith 
2011, 295)

What  will be new by the time of the 1712 letter to Bernoulli is Leibniz’s in-
terest in describing a  mental pro cess such as memory as parallel to the bodily 
vibration that is brought about by the elastic force and that keeps the body 
in perpetual motion. Bernoulli would hold that “in the  whole machine of the 
 human body,  every smallest particle involved in a movement is moved  either 
directly by an order of the soul or by muscles. All  these muscles follow 
strictly and steadily the laws of mechanics.” Leibniz was very impressed with 
Bernoulli’s work, yet  there is no way, given Leibniz’s conception of body and 
soul as parallel automata, that he could have agreed with his physician friend 
as to the dual sources of motion in the body. Leibniz would certainly agree 
that the muscles follow the laws of mechanics, and that the origin of motion 
in the muscles is a mechanically explicable pyrotechnical event, yet for him 
no “order of the soul” could make a diff erence in the succession of a corpo-
real substance’s states. Th e reason for this is spelled out at length in Leib-
niz’s arguments against Stahl’s account of how the soul moves the body.

Leibniz agrees that the body contains the princi ples of its own motion, 
and this  will be the major point of contention around which his debate with 
Stahl circles. Th e debate, at least as both of its participants understood it, was 
not about ‘vitalism,’ a notion that would not even come to be meaningful 
 until well  aft er the deaths of both Leibniz and his opponent. Yet if we must 
categorize Leibniz anachronistically in terms of this doctrine, we may say 
with fi rm conviction that he is an antivitalist: for him, the growth, motion, 
and preservation of a living body can be exhaustively accounted for without 
appeal to the soul. Th e soul is not responsible for life.

In many re spects, Leibniz’s development with res pect to the question of 
mechanism refl ects the development of his philosophy as a  whole: we see an 
early, fervent commitment to the explanatory promise of the mechanical 
philosophy, followed by a gradual re introduction of a role for teleological 
explanation, one that sees it as coexisting with mechanical explanation, and 



262 justin e .  h.  smith

that sees each of the two types of explanation as accounting for one and the 
same world at diff  er ent metaphysical levels and in view of diff  er ent episte-
mological exigencies. Leibniz’s rediscovery of teleology, however, and his 
mature view that natu ral beings are not ‘mere’ machines but rather corpo-
real substances, should not be seen entirely as an abandonment of the proj-
ect of mathematizing nature. Rather, the conception of both the structure 
and complexity of nature on the one hand, and on the other the sort of 
mathematical model that could be useful in the study of nature, changed in 
tandem. For Leibniz, in both mathe matics and in nature, the key concept 
would be one that, as we have already seen, had been utterly excluded in fi rst- 
wave mechanical philosophy such as that of Descartes: infi nity.

divine machines

Leibniz’s mature antivitalism is far from a further development of approach-
ing anatomy and physiology more geometrico. If  there is any extent to which 
mathe matics continues to provide a model for the study of living bodies, 
then the domain of mathe matics that suggests itself is not geometry, but 
rather the infi nitesimal calculus. As we have already seen, Nachtomy per-
ceives a close relationship in Leibniz between the mathe matics of infi nity on 
the one hand and his analy sis of the structure of organic bodies on the other. 
However,  there are some grounds for caution in perceiving Leibniz’s engage-
ment with the mathematical prob lem of infi nitesimals as shining any sort 
of light on his metaphysics of body.  Th ere are no smoking- gun texts that lead 
us directly from the one to the other, though Nachtomy does make a rather 
compelling case that the infi nite nestedness of parts within parts that de-
fi nes Leibniz’s mature conception of the organic body could not have taken 
shape in the way it did if Leibniz had not been working through the prob-
lem in many other areas of his philosophical refl ection. Th is includes his re-
fl ection on the composition of the continuum and his contributions to the 
development of the infi nitesimal calculus, as well as his refl ections on the 
nature of freedom and the idea of infi nite analy sis of complete concepts. In 
a very broad sense, then, we may cautiously say that for Leibniz infi nity is a 
central concern in many aspects of his thought, and that this concern is re-
fl ected equally, with in ter est ing parallels across both domains, in Leibniz’s 
mathe matics and in his account of the structure and motion of so- called 
living bodies. Leibniz’s ultimate account of  these bodies, we might say, dif-
fers from the account of respiration, circulation, generation, and so on, that 
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had been sought  aft er by fi rst- wave mechanists in roughly the same way the 
infi nitesimal calculus diff ers from geometry.

As Nachtomy has well noted,  there is no domain of the natu ral world 
that does not involve infi nity. Rather than rejecting infi nity, as both Aristo-
tle and Descartes had recommended, Leibniz is insistent that any adequate 
explanation of nature must involve the notion of infi nity. As he writes to 
Foucher: “I am so much in  favor of  actual infi nity that, instead of admitting 
that nature rejects it, as it is vulgarly said, I hold that it aff ects it everywhere, 
for better marking the perfections of its author” (G 1 416). Nachtomy rightly 
stresses however that Leibniz employs diff  er ent notions of infi nity in dif-
fer ent contexts, and that he is particularly careful to distinguish between 
infi nity in a mathematical context, “which concerns abstract and ideal en-
tities,” and in a metaphysical context, “which concerns concrete and real 
beings” (Nachtomy 2014).

Th e princi pal diff erence between the two contexts, as Nachtomy’s dis-
tinction suggests, is that mathe matics concerns itself with ideal entities, which 
thus have no real divisions in them but rather are literally continuous, that 
is, are such that they are not constituted out of real parts, but rather any part 
or section can be taken out of any given part or section at  will. Th us ideal 
continua are actually infi nitely divisible, for Leibniz, whereas concrete and 
real beings are actually infi nitely divided. Recall, in this connection, Leib-
niz’s notes on a letter to Fardella, from 1690.  Th ere, he drew an analogy 
between the composition of the organic body on the one hand and the rela-
tionship between points and lines on the other, arguing that bodies are no 
more built up out of fundamental parts than lines are built up out of points. 
But  there is a crucial diff erence, namely, that  there is no conceivable need to 
account for how lines are built up at all, since on the fi nal analy sis  there 
simply are no such  things as real lines. Bodies, however, demand to be ac-
counted for; they are real, and therefore  really constituted in some way or 
other, even if they are not constituted out of physical atoms. Th e answer, 
again, is that bodies are constituted as divine machines, which is to say that 
they result from the conspiracy of infi nitely many other organic bodies, and 
so on without end, ad infi nitum, no  matter how far down you may wish to 
go in your analy sis of the organic bodies constituting other organic bodies.

From the mid-1690s  until his death, Leibniz gives several explicit ac-
counts of what he means by this technical term, all of which amount to 
variations on the same core idea.12 He says to Stahl in 1709, for example, 
that “organic machines are nothing other than machines in which divine 
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invention and intention are expressed to a greater extent” (Leibniz 1720, 
135). And fi ve years earlier, in a letter to Damaris Masham, he writes: “I 
defi ne organism or a natu ral machine, as a machine each of whose parts is a 
machine, and consequently the subtlety of its artifi ce extends to infi nity, 
nothing being so small as to be neglected, whereas the parts of our artifi cial 
machines are not machines. Th is is the essential diff erence between nature 
and art, which our moderns have not considered suffi  ciently” (G 3 356).

“Organic,” as an adjective, in the seventeenth  century had no par tic u lar 
biological connotation (and of course “biological” had no connotation what-
soever). Rather, it was fi rst and foremost a description of anything that has 
interrelated, working parts,  whether physical or conceptual; anything, that 
is, that the Greeks would have recognized as an organon, a term any ser-
viceable Greek- English lexicon would translate as “instrument” or “tool.” 
Working with this minimal defi nition, we arrive already at the surprising 
conclusion that if we wish to avoid anachronism we must stop reading early 
modern occurrences of the term “organic” as antonyms of “mechanical,” and 
instead interpret them as synonyms.

Anne Conway illustrates this original synonymy of “organic” and “me-
chanical” very clearly in her Princi ples of the Most Ancient and Modern Phi-
losophy, published posthumously in 1690, when she writes that an animal is 
not “a mere Organical body like a Clock, wherein  there is not a vital Princi-
ple of Motion” (Conway 1996). Similarly, in his Lexicon Philosophicum of 
1662, Johannes Micraelius (1996) defi nes “organic parts” as “composite het-
erogeneous parts . . .  Th ey are members of the body, which nature exploits 
for uses that are necessary for life.” Th e “inorganic” in turn is the “intellect, 
for it does not have its own organ of the body of which it makes use” (Mi-
craelius 1662). Th e organic is what ever has working parts— machines and 
animals alike— and the inorganic is that which lacks parts, which is to say, 
that which is  mental or intellectual. But Micraelius gives no possibility for 
distinguishing among diff  er ent kinds of organicity, just as some eff orts to 
describe animals as  simple machines off ered no criteria for distinguishing 
among diff  er ent va ri e ties of mechanicity. Th is is what Leibniz would pro-
vide: for him, organicity is a special variety of mechanicity; for Leibniz, in 
contrast with Conway, the  horse’s body is “organical.” A body is organic, 
Leibniz explains, “when it forms a kind of automaton or natu ral machine.” 
For Leibniz, unlike Conway, the  horse’s body, even though it is organic, is 
not simply like a watch, since to be an organic body is not to be a “mere” 
organic body. Leibniz defends the organicity of the  horse by denying it to 
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the watch. Th is distinction might seem obvious  today, but  until Leibniz 
made it, it went against the very meanings of the words involved.

Leibniz would agree with Aristotle’s general line of reasoning, accord-
ing to which it is the function, and not the material constitution, of an or-
gan or an animal that makes it the sort of organ or animal that it is. For him 
it is impious to argue that eyes see simply  because they are so structured as 
to be able to see, rather than that they  were structured in order to see. Leib-
niz  will  favor the function of the organ by tracing its existence to a divine 
creator and to its, so to speak, “intelligent design.” Such a consideration cer-
tainly could not have interested Aristotle, yet in his as in Leibniz’s case the 
organ exists for the execution of a function, rather than that it happens to 
fulfi ll that function simply  because it exists. Leibniz would certainly also 
agree with Aristotle that just as a blind eye is an eye in name only, so, too, a 
cadaver is a man only by convention. What makes the blind eye merely a 
nonfunctioning organ, rather than a dead animal, is that the seeing eye that 
it once was, was what it was only insofar as it contributed to the telos of the 
creature as a  whole.

While Leibniz’s understanding of “organic” does mark a new turn in the 
history of the concept, it is still not the antonym of “mechanical” that many 
commentators have taken it to be. In Leibniz’s view, an organic body is 
distinct from a clock with res pect to the complexity of its constitution, but 
Leibniz continues to agree with Conway that an organic body, considered 
in itself, lacks a single, dominant, vital princi ple. For Leibniz, an organic 
body is distinct from a mere mechanical body in that it is infi nitely complex, 
but this does not mean that the organic body per se is something the expla-
nation of which requires the introduction of an immaterial vital princi ple. It 
is true that metaphysically speaking an organic body is always dominated by 
the soul or form of the animal or corporeal substance to which it belongs, 
but physically speaking, the diff erence between an organic body and an in-
organic body is found in the complexity of the organic body: it and all of its 
parts and the parts of the parts, ad infi nitum, are machines of nature.

Th e organic body of the fi sh, then, insofar as it is the body of the fi sh, 
 will in fact never be without a dominant monad or unifying entelechy. Yet 
the block of marble, at least as a  whole, is always without one, even though 
 every part of the organic  matter making up the block of marble is part of 
some corporeal substance. An organic body can at most be conceptually dis-
tinct from a corporeal substance, while in fact  there is never an organic 
body that is not the organic body of a corporeal substance.
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Any arbitrarily chosen parcel of  matter is extremely unlikely to consti-
tute in itself one organic body, even if  there is no part of it that is not so con-
stituted. As Leibniz writes in 1702, the organic body, taken separately, is just 
a special kind of aggregate, while the  union of this organic body with an en-
telechy is one per se, and not a mere aggregate of many substances, for  there 
is a  great diff erence between an animal, for example, and a fl ock. And fur-
ther, this entelechy is  either a soul or something analogous to a soul, and 
always naturally activates some organic body. Which, taken separately, in-
deed, set apart or removed from the soul, is not one substance but an aggre-
gate of many, in a word, a machine of nature.

Th e organic body, then, is a machine of nature, even if, taken together 
with the soul rather than separately, the  whole  thing is not a machine at all, 
but a corporeal substance. Insofar as we are considering the organic body of 
the fi sh, as distinct from its soul, we are considering something on an onto-
logical par with a pile of sawdust, even though the fi sh, which consists in this 
organic body and an ichthyoid soul, is of an ontologically higher rank than 
the pile. Th e block of marble is made up entirely of organic  matter, but is 
only an aggregate, insofar as it is not, as a  whole, unifi ed by a dominant 
monad or entelechy. Th e fi sh’s body is also made up entirely of organic 
 matter, but the fi sh itself is a corporeal substance and not an aggregate, 
insofar as  there is a dominant monad, the fi sh’s soul, uniting the organic 
body. While it is true that souls and bodies are not  really separable, their 
conceptual separation is of central importance.

We fi nd the same point also in the New Essays. Animated bodies, Leib-
niz says  there, can be picked out by their interior structures. Body and soul 
can each be taken separately, and each suffi  ces for the determination of the 
identity of the  thing in question. Neither infl uences the other, but each ex-
presses the other perfectly, the one being the concentration in a unity of 
what the other disperses throughout a multitude. Leibniz emphasizes that 
the organic body may be taken separately (pris à part), which is to say that 
organic bodies just are the machines of nature, or that which remains me-
chanical in its least parts, and which does not require the introduction of 
the capacity for perception that would be required in the exhaustive account 
of a corporeal substance.

In Divine Machines, I have developed at greater length this distinction 
between the organic body and the corporeal substance.  Th ere is no need to 
dwell on it any further  here. It is enough to be clear that, for Leibniz, the 
corporeal substance is to be understood in relation to its ends, which it has 
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in virtue of the domination relation of its soul or entelechy to the infi nitely 
many other monads implicated in it; the natu ral or divine machine, by con-
trast, which is to say the organic body, is to be understood without regard 
for its ends or for its unifi cation  under the domination of an entelechy, but 
only with regard to its infi nite structure.

It is precisely this infi nite diff erence between the natu ral and the artifi -
cial machine that, for the mature Leibniz,  will come to be coextensive with, 
and also come to replace, the more familiar distinction between the living 
and the nonliving. As Leibniz makes particularly clear already in the Proto-
gaea of the early 1690s, the formation of crystals, by contrast with that of 
animals and plants, can be exhaustively analyzed in terms of “external con-
tiguity,” that is to say in terms of the regular repetition of radial and polygo-
nal shapes. Th is is impor tant,  because it sharply delineates anything formed 
geologically, including crystals, from the realm of the organic. Crystals and 
organic bodies are in fundamentally diff  er ent ontological categories, yet this 
diff erence cannot be accounted for by the fact that the former are ‘nonliv-
ing’ while the latter are ‘living,’ since, strictly speaking, for Leibniz organic 
bodies are not living. Rather, organic bodies can be explained exhaustively 
in terms of their vegetative structure, while life, in turn, is simply a capacity 
of immaterial perceiving monads. As Leibniz writes to Stahl, in response to 
the Halle physician’s account of supposedly irreducibly vital pro cesses: “I do 
not wish to quarrel over words. It is the author’s wish to call ‘life’ what  others 
call ‘vegetation’ ” (Leibniz 1720, 11). Animal bodies vegetate but are not alive, 
for the mature Leibniz, and vegetative structure consists precisely in this: 
that whereas crystals, for example, are generated out of the fi nite repetition 
of regular geometric forms, vegetative bodies are ungenerable, to the extent 
that they consist in an infi nite structure with no lower limit to its composi-
tion, and thus no possibility of ever being decomposed into its elementary 
constituents, or of ever having been built up in time from such constituents.

At this point, we have considered just about  every aspect of the struc-
ture and nature of organic bodies, or divine machines, and of corporeal sub-
stance that Leibniz was willing or able to impart to us. We have seen that 
they are real, infi nitely structured entities, whose composition Leibniz on 
occasion wishes to describe on analogy to the relationship between points 
and lines, even though he knows that this analogy cannot be terribly help-
ful, to the extent that lines and bodies belong to entirely diff  er ent ontologi-
cal categories, and lines, as ideal entities, do not  really need to be constituted 
at all. But how, if bodies are real, composite entities, can they fail to be built 
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up out of fundamental parts, as  houses are from bricks, rather than simply 
resulting from requisites? What is it that yields a big body if not several 
smaller bodies? But if  there is no lower limit to the analy sis of smaller bod-
ies into smaller bodies still, then how can a body of any size ever be yielded 
by composition?

Nachtomy, as we have seen, believes that Leibniz is emboldened in ac-
counting for the composition of real bodies by appeal to infi nity as a result 
of his parallel success in the mathematical treatment of infi nite quantities. 
Having banished paradox from the mathe matics of the infi nite, Leibniz was 
now ready to explain the bodily world as well by appeal to infi nity. On Nach-
tomy’s view, this was a  great coup de grâce of Leibniz’s philosophy: to give 
us a novel, postmechanist philosophy of nature by extending his successes 
in the mathe matics of the infi nite to the study of the natu ral world. Yet as I 
have been arguing  here, the not- merely-mechanical, end- directed corporeal 
substance is something quite distinct from the infi nitely structured organic 
body. To the extent that Leibniz invokes infi nity in his analy sis of natu ral 
bodies, in other words, he does so precisely in order to preserve a variety of 
mechanism, even if this amounts to a mechanism with a very considerable 
twist. Th is is precisely the point of Leibniz’s insistence that, as he writes to 
Stahl, “organism is in truth mechanism, but more exquisite” (Leibniz 1720, 
9). ‘Exquisiteness,’ for Leibniz, does not reach back to a pre- Cartesian under-
standing of nature, but rather radically modifi es the mechanical philosophy 
in order to give an account of nature that is adequate to its complexity, and 
that is also almost wholly original in Leibniz (with, obviously, a complex 
prehistory in fi gures such as Giordano Bruno, Nicholas of Cusa, Henry 
More, and many  others).

A fi nal prob lem with the suggestion that Leibniz is off ering us a post-
mechanical nature by extending his successes in the study of the mathe-
matics of the infi nite to his account of the natu ral world is precisely that 
we may doubt that his invocation of ‘infi nity’ in his account of the structure 
of bodies has much to do with mathematical infi nity at all. It is certainly 
true, as Nachtomy suggests, that Leibniz was able to some extent to banish 
paradox from the mathematical treatment of infi nity by treating infi nitesi-
mal quantities as variables. But again, the freedom to treat them in this way 
in the end rested for Leibniz on the fact that mathe matics is only concerned 
with ideal entities, yet the very challenge that the natu ral world poses for 
Leibniz is that it requires us to account for something real, actually existing, 
and resistant to fi ctions. Leibniz determines that the  matter making up this 
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world is actually infi nitely divided, and that the organic bodies, in which all 
existent  matter is wrapped up, consist in bodies nested within one another 
ad infi nitum. It is not clear that in elaborating this remarkable account of 
the natu ral world, which is to say of the living world (to say that the two are 
coextensive is in the end exactly the same as to say that all  matter is wrapped 
up in organic bodies or divine machines), Leibniz successfully steers clear 
of paradox.

conclusion

Leibniz’s theory of divine machines may, in sum, be seen as a continuation 
of the proj ect of the mathematization of nature, even if it amounts to a con-
tinuation in such diff  er ent terms as to be almost unrecognizable. From the 
treatment of nature more geometrico that inspired early mechanical philos-
ophy, we witness a shift  to an approach to nature inspired more by the 
mathe matics of the infi nite and of infi nitesimals. But this shift  is based, ul-
timately, on an untenable analogy between two diff  er ent realms, the ideal 
and the real, and in the end it does not seem that Leibniz’s success in ad-
vancing a paradox- free treatment of the mathematical infi nite enabled him 
to provide a fully compelling account of the infi nite structure of natu ral 
bodies.

We may ask  whether an early mechanical phi los o pher such as Descartes 
would have seen the introduction of the concept of the organic, which is to 
say, again, the concept of the infi nite structure of bodies, as a failure of the 
mechanical program, or rather as a fi nal perfection of it. But one  thing that 
is certain is that Descartes and Leibniz both saw the need to account for the 
structure and origins of what are commonly called ‘living beings’ as likely 
the most pressing task for the new natu ral philosophy to fulfi ll. Leibniz’s ac-
count of living bodies would come to serve for him as the explanation of 
body in general, and in this res pect we may say, with Garber (1985), that for 
Leibniz it is what we would call ‘biology,’ rather than physics, that is the 
foundational science of nature. Leibniz hoped early on to ‘mathematize’ bi-
ology, or what he called ‘medicine,’ but seems to have grown skeptical of the 
possibility of  doing so as his mature philosophy developed. At the same time 
as his mature philosophy developed, however, he became increasingly en-
thusiastic about an account of living nature that rested on the notion of in-
fi nity. As I have attempted to argue, however, against Nachtomy’s provocative 
and in many re spects compelling account, this employment of the notion of 
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infi nity in the mature account of nature does not amount to a successful in-
stance of the mathematization of nature, nor even a conscious attempt to 
mathematize it.

 Th ere are, of course, many sources feeding into Leibniz’s use of infi nity 
in his philosophy, and in par tic u lar into his account of the infi nitely nested 
structure of natu ral bodies. His work in the mathe matics of infi nity no 
doubt played a role. Although the full case has yet to be made, however, a no 
less signifi cant source for Leibniz’s conception of worlds within worlds, and 
of the constitution of composite beings out of countless other such beings, 
appears to have come from the science fi ction of which he was an avid reader: 
the imaginative fl ights of fancy from the likes of Cyrano de Bergerac, for 
example, who dreamed up a trip to the sun, and an encounter  there with de-
liriously strange beings. Leibniz, the genius eclectic, did not dismiss Cyra-
no’s pomegranate men as the products of a mere rêverie, but instead saw in 
them a refl ection of the very earnest account of the natu ral world he spent 
much of his intellectual energy, drawing on sundry and oft en surprising 
sources, to elaborate.13

abbreviations

ag Ariew, R., and D. Garber, eds. 1989. G. W. Leibniz: Philosophical Essays
at Descartes, R. 1964–76. Oeuvres de Descartes
g Leibniz, G. W. 1875–90. Die Philosophische Schrift en von G. W. Leibniz

notes

 1. “De la description des cors inanimez & des plantes, ie passay a celle des 
animaux & particulierement a celle des hommes. Mais, pourceque ie n’en 
auois pas encore assez de connoissance, pour en parler du mesme style que 
du reste, c’est a dire, en demonstrant les eff ets par les  causes, & faisant voir 
de quelles semences, & en quelle faôn, la Nature les doit produire, ie me 
contentay de supposer que Dieu formast le cors d’un homme, entierement 
semblable a l’un des nostres, tant en la fi gure exterieure de ses membres 
qu’en la conformation interieure de ses organes.”
 2. Citing Ariew’s citation of Sophie Roux summarizing Husserl on 
mathematization (see Ariew, chapter 4, this volume).
 3. “Il faut tousjours expliquer la nature mathematiquement et meca-
niquement, pourveu qu’on sçache que les principes mêmes ou loix de meca-
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nique ou de la force ne dependent pas de la seule étendue mathematique, 
mais de quelques raisons metaphysiques.”
 4. Nouveaux essais 2, ch.  7, §42. “[C]’est . . .  comme Arlequin qu’on 
voulait dépouiller sur le théâtre, mais on n’en put venir à bout, parce qu’il 
avait je ne sais combien d’habits les uns sur les autres: quoique ces réplica-
tions des corps organiques à l’infi ni, qui sont dans un animal, ne soient pas 
si semblables ni si appliqués les unes aux autres, comme des habits, l’artifi ce 
de la nature étant d’une tout autre subtilité.”
 5. Leibniz to Masham, May 8, 1704.
 6. Anne Mauduit Nolant de Fatouville (credited anonymously as 
‘Monsieur D***’), Arlequin Empereur dans la Lune (de Fatouville between 
1765 and 1814).
 7. Antonio Nunziante has off ered an excellent analy sis of the relevance 
of this part of Cyrano’s work for our understanding of Leibniz’s theory of 
corporeal substance, and it is Nunziante who fi rst brought this connection 
to my attention (see Nunziante 2011).
 8. Nouveaux essais 2, ch. 23, §43. “Au reste je suis aussi d’avis que les 
Genies appercoivent les choses d’une maniere qui ait quelque rapport à la 
nostre, quand même ils auroient le plaisant avantage, que l’imaginatif Cyrano 
attribue à quelques Natures animées dans le Soleil, composées d’une infi nité 
de petits volatiles, qui en se transportant selon le commendement de l’ame 
dominante forment toutes sortes de corps.”
 9. “Tout cet amas de petits hommes n’avoit point encore, avant cela, 
donné aucune marque de vie; mais, sitot qu’il eut avalé son petit Roi, il ne se 
sentit plus être qu’un.”
 10. Aristotle 1, 2:719.
 11. Portions of this section  were developed previously in Smith (2011) 
though in the course of making a very diff  er ent argument about the place of 
medicine and physiology in Leibniz’s philosophy.
 12. Portions of the pres ent treatment of the distinction between “organ-
ism,” “organic body,” “mechanism,” and “corporeal substance”  were previ-
ously developed in Smith (2011) though, again, in the course of making a 
very diff  er ent argument about the signifi cance of  these concepts in Leibniz’s 
philosophy.
 13. Elsewhere, I have argued for the impor tant role of the empirical dis-
coveries of microscopy in the development of Leibniz’s theory of composite 
substance, and indeed  here I am not at all seeking to subvert that account, 
nor to refute Nachtomy’s, but only to recommend that  here, as in so many 
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other areas of Leibniz’s thought, no single monocausal account  will do. See, 
in par tic u lar, Smith (2011).
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Mais ie n’ay resolu de quitter que la Geometrie abstracte, c’est a dire la 
recherche des questions qui ne seruent qu’a exercer l’esprit; & ce affi  n 
d’auoir d’autant plus de loysir de cultiuer vne autre sorte de Geometrie, 
qui se propose pour questions l’explication des phainomenes de la nature.
— descartes to mersenne, july 27, 1638

the connection between geometrical method 
and mathematization of nature

Use of the geometrical method has long been criticized, even before Kant, 
for being inappropriate in the fi eld of philosophy.  Th ere is above all the gen-
eral reluctance to accept the ponderous method of geometrical demonstration 
in philosophy. Th is method is considered to require defi nitions and demon-
strations of propositions,1 rarely commenting and explaining, thus provid-
ing  little communication with the audience, while eschewing irony and 
rhe toric altogether. Many phi los o phers characterized this geometrical 
method as a mere external means of pre sen ta tion, without contributing any-
thing philosophical.2 In the case of Spinoza, his use of the geometrical 
method was even considered as a major hindrance to the reader’s getting 
into his precious inner doctrine.3

My aim in this chapter is to argue that the geometrical method is not just 
a form of pre sen ta tion or demonstration. Rather, this method was seen as a 
new standard of knowing natu ral  things. It was embraced as a new episte-
mological approach to the external world, laying the ground for a new type 
of science and philosophy. Th e geometrical method of early modern times 

11

the geometrical method as a new 
standard of truth, based on the 
mathematization of nature

u rsu l a g olden baum
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was no longer just geometry but was clearly connected with the new science 
of mechanics. It was the wedding of mathe matics and the art of mechanics, 
that is, the art of building machines that brought about Galileo’s new science 
of mechanics. Turned into a science, mechanics was no longer the art of 
building machines and “tricking nature.” Rather, the entire world was now 
considered as a machine, constructed by a divine mechanic.

While this new mechanical science owed much to geometry, it in turn 
had the greatest impact on geometry and mathematical development in 
general.4 While Euclid had defi ned a line by the motion of a point rather 
accidentally, early modern mathematicians and then Hobbes made the 
generation of geometrical fi gures the starting point for understanding geo-
metrical fi gures through their  causes. Hobbes, moreover, used this new ex-
planatory device far beyond mathe matics and formulated the general 
epistemological princi ple that we can only know what we can generate (OL 
I, 9; De corpore I, 1, #8). Alan Gabbey (1995) fi rst pointed to the oft en over-
looked achievement of Spinoza who fi rst used the geometrical method to 
understand the functioning of  human beings, especially of their emotions 
and of the consequences for their morals and politics (142–91). Of course, 
Spinoza also uses the geometrical method to pres ent his argument by com-
pelling demonstrations. What is of greater signifi cance though, is the fact 
that he uses this method to lay ground for a scientifi c ethics: “In this res pect 
the Ethics was more radical than (say) Newton’s Philosophiae naturalis 
principia mathematica (1687), where at least the mathematica and the 
philosophia naturalis  were both parts of philosophia speculativa” (Gabbey 
1995, 147–48).

Spinoza’s entire metaphysics, the notorious parallelism of his philosoph-
ical system, rests on the new geometrical method, namely on the conviction 
that ideas follow one another in the same order and connection as  things in 
the world, causing one another. According to the analytical geometry of 
Descartes and Viète, the fi gure of a circle parallels its equation if consid-
ered in the framework of the Cartesian coordinates with a defi ned unit.  Th ere 
the fi gure of the circle was substantially identical with its equation with-
out any vis i ble similarity of the fi gure with its equation.5 What gave rise to 
the geometrical method as a new epistemological standard in philosophy, 
embraced by all rationalists, was Galileo’s mathematization and thereby 
mechanization of nature, the wedding of mathe matics to mechanics.

 Th ese phi los o phers saw mathe matics and the geometrical method as the 
high road to certainty in  human knowledge while raising caution about 
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mere sense experience. Th e mathematical method could not only provide cer-
tainty but also freedom from authorities and from biased interpretations of 
mere empirical facts: “For  there is not one of them,” Hobbes complains 
about past phi los o phers, “that begins his ratiocination from the defi nitions, 
or explications of the names they are to use; which is a method that hath 
been used only in geometry, whose conclusions have thereby been made in-
disputable” (Hobbes 1994, 24; Leviathan v, 7). And Spinoza states that the 
belief alone “that the judgments of the Gods far surpass man’s grasp . . .  
would have caused the truth to be hidden from the  human race to eternity, 
if mathe matics, which is concerned not with ends, but only with the essences 
and properties of fi gures, had not shown men another standard of truth” 
(Ethics I App, C 441; emphasis added).

Th is enthusiasm for the new geometrical method in close connection 
with the mathematization of nature stirred up re sis tance. Th e aversion of 
theologians—as well as of Christian phi los o phers such as Henry More, 
Locke, Kant, and the German idealists— against the geometrical method 
was not a result of their deep mathematical insights. Rather it was due to 
their fear of necessitarianism as well as of hubris. Th ey feared that the geo-
metrical method, with its claim to provide knowledge as certain as that of 
God (adequate ideas), would lead to the claim of  human “omniscience.”6 Th e 
mathematization of nature would introduce the mathematical necessitari-
anism into nature and take away God’s  will and  humans’  free  will.7 Fight-
ing Wolffi  anism, Joachim Lange, the chief pietist theologian, and Valentin 
Ernst Löscher, the leader of orthodox Lutheran theologians (Löscher 1735, 
126–29), both saw the geometrical method, especially the ge ne tic defi ni-
tions, in clear connection with the mathematization of nature.8 Th ey saw 
the aim of certainty of  human knowledge as delivering divine certainty to 
 human beings. Th ey considered the view that ge ne tic defi nitions provide the 
highest standard of truth as a threat to throw theology from the throne in 
order to install philosophy as the highest knowledge.9 Lange and Löscher 
both blamed the geometrical method for dismissing the truth of the Chris-
tian religion10— because the latter rested on historical knowledge alone, thus 
lacking adequacy.11

What made theologians so vigilant against this method is just the as-
sumption that we can use mathematical and further mechanical methods 
to study the inner structure of nature, God’s creation— and that we can come 
up with a kind of knowledge that is superior to mere sense perception and 
mere empirical investigation, nay, which is even like that of God himself. 
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In contrast, the Lutheran theologians praise empiricist phi los o phers and 
scientists.

As a  matter of fact, such fundamental theological suspicion against 
mathe matics as a tool of natu ral science had been expressed by Catholic 
theologians before, against Galileo— that is, right from the outset of the new 
mathematical science of mechanics. In the documentation of the trial one 
can fi nd, among other listed accusations against Galileo, “to badly state and 
declare that  there is a certain equality, in understanding geometrical  things, 
between the  human and divine intellect” (Galilei 1907, 19:326–27).12 Th us, 
from the very beginning, the enthusiasm to mathematize the science of 
nature and thereby gain access to the inner structure of nature through dis-
covering mathe matics within nature stirred up strong theological re sis tance.

Th is critical approach to the mathematization of nature was perfectly in 
agreement with the tradition of Aristotle and even of Plato (Cassirer 1946, 
277–97). With all res pect and enthusiasm for mathe matics, they would never 
have thought of nature, that is, of pebbles, mountains, rivers, plants, or 
animals, as being mathematically structured.  Th ese natu ral  things could 
be known only by observation and classifi cation. In contrast, Galileo, and 
thereaft er Descartes, Spinoza, and  others considered nature to be constructed 
mathematically. Th erefore, we needed mathematical science to learn about 
the functioning of nature. Cassirer emphasizes this diff erence: “For what 
does the term ‘science’ mean in Galileo’s system? It never means mere prob-
ability, it means necessity. It means no mere aggregate of empirical facts or 
haphazard observations; it implies a deductive theory. Such a theory must 
be capable of demonstration; it cannot be based on mere opinion or proba-
bility. If it is not pos si ble to attain such a deductive truth about physical 
phenomena, then Galileo’s scientifi c ideal, the ideal of modern dynamics, 
breaks down” (Cassirer 1946, 281). And indeed, the term “necessary dem-
onstrations” as Galileo’s tool of mechanical science occurs again and again 
in his writings.13

In early modern times, it was fi rst the theologians who defended the 
view that nature, as God’s creation, is incomprehensible to  human beings, 
knowable only by observation, externally, and by chance. Th is defensive po-
sition was soon taken up by (Christian) phi los o phers, who tried to escape 
the mathematization of nature and thereby escape the comprehensibility of 
nature by mathe matics (Goldenbaum, forthcoming, “How Th eological Con-
cerns Favor Empiricism over Rationalism”). I see mathematizing nature and 
the rejection thereof as the root of the well- known opposition of the two 
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philosophical camps of rationalism and empiricism, an opposition that con-
tinued into the  battles between Wolffi  anism and Pietism during the eigh-
teenth  century in Germany, and which provided the background for Kant’s 
entrance into philosophy. Kant’s well- known rejection of the geometrical 
method as inappropriate did not result from Kant’s work on mathe matics 
 either (Kant 1998, 630–48). He had argued against the mathematization of 
nature and the geometrical method in his very fi rst book on the estimation 
of forces (Goldenbaum, forthcoming) when he barely knew recent mathe-
matics.14 He simply shared the German Lutheran theologians’ fear of neces-
sitarianism and tried to save  free  will by allowing a mutual infl uence of body 
and soul (Goldenbaum, forthcoming).

In addition to the traditional objection against  human hubris when 
claiming a  human knowledge of nature like God’s own,  there lingered an-
other threat for Christian religion that arose out of the mathematization of 
nature— namely necessitarianism. What constitutes the  great advantage 
of mathematical cognition, namely necessary knowledge, would allow for 
necessary knowledge about nature as well—if nature  were mathematically 
structured. Natu ral pro cesses  were necessary and could be comprehended 
by means of causal connections. As a result, if mathe matics  were to struc-
ture God’s creation it would mean the end of  free  will, that of God as well as 
of  human beings. Neither would God be capable of acting arbitrarily accord-
ing to His good  will, nor could  human beings have a  free  will to act according 
to the good or bad. It was  these theological concerns that produced a deep 
suspicion among Christian phi los o phers against using the geometrical 
method beyond mathe matics. Exemplary of this philosophical suspicion 
against the mathematization of nature and the geometrical method is the 
development of Henry More’s relation to Descartes and his philosophy. 
While More had never been a partisan of Descartes, he admired his work in 
the beginning and appreciated the special status of the soul in this phi los o-
pher’s system. However, from More’s fi rst comments one can grasp his 
sensitivity regarding Descartes’ emphasis on the geometrical method, on 
mathe matics as the high ave nue to knowledge of nature, and on the necessity 
of the knowledge we are able to obtain in this way (More 1711, esp. 3, 8, 40). 
But More would turn against Cartesianism as atheism as soon as its neces-
sitarianism became notorious, through Descartes’ partisans, as Alan Gab-
bey has shown (1982, 173–74). Although More would never accuse Descartes 
himself of being an atheist, he recognized that the mathematization of na-
ture would inevitably result in necessitarianism, leading to atheism. Th is 
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became manifest with Hobbes’s Leviathan, Ludewijk Meijer’s Philosophia 
Scripturae interpres, and ‘Cartesian’ writings, not to mention Spinoza (ibid., 
233–50). Of course, the critics of the mathematization of nature well agreed 
that we can produce mathe matics within our minds. But they strongly de-
tested mathe matics in nature, outside of ourselves; or, if  there  were mathe-
matics in nature, they held that we could not have any access to it due to our 
limited capacities. As a result, John Locke even stated that  there could never 
be such a  thing as a science of natu ral bodies (Locke 1975, 560; Essay IV, 
3, #29).

In this chapter I fi rst explain this new geometrical method and its new 
use in philosophy and science in general, thereby refuting the above- 
mentioned prejudices against its appropriateness in  these fi elds (see next 
section). I then focus on the concept of defi nitions as the cornerstone of the 
new geometrical method and discuss the concept of adequate ideas, show-
ing how it is closely related to the concept of causal defi nitions, which was 
fi rst introduced by Th omas Hobbes. I then describe how the Christian phi-
los o pher Leibniz embraced the new geometrical method and the concept of 
causal defi nitions that led to his logical containment theory and how he 
strug gled to avoid necessitarianism while retaining the geometrical method 
and the mathematization of nature. Leibniz was aware that it was the threat 
of necessitarianism that caused theologians and especially British phi los-
o phers to reject the geometrical method in metaphysics. He assured the 
Cambridge Platonists that, based on his approach, mathe matics and the 
geometrical method would no longer threaten  free  will and could be suc-
cessfully applied (GP 3 363–67, 401–3).

what is the geometrical method?

Although ancient mathe matics used the method of deducing demonstra-
tions from axioms and defi nitions, surprisingly, the term “geometrical 
method” came into use only during early modern times. Since Zabarella, it 
has been described as involving two aspects, both belonging to the method, 
namely the resolutive and compositive methods, also known as the analytic 
and synthetic methods (Cassirer 1974, 1 136–44). While the former is con-
sidered to be helpful for discovery and invention (but diffi  cult to bring  under 
rules), the latter is appreciated for ensuring the certainty of the results due to 
a complete deduction of propositions; that is, demonstration. Th us it was the 
synthetic method in par tic u lar that provided the compelling force to convince 
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 others of the correctness of a solution, while scientists and especially math-
ematicians did not care much about a gapless deduction if they  were work-
ing to solve a prob lem (Breger 2008, 191–92). It was above all the compelling 
force of the method that made it highly attractive to early modern phi los-
o phers and scientists. Th e familiar anecdote about Hobbes’s wondering 
about the Pythagorean theorem and being struck by the compelling power 
of its demonstration may illuminate this enthusiasm (Aubrey 1898, 1 332–33; 
Hobbes 1994, lxvii). But it was this compelling power of the geometrical 
demonstration as well that caused theological concerns about the method, 
and, moreover, about mathe matics in general, as soon as this geometrical 
method was applied beyond pure mathe matics.

Usually, when we think of geometrical method  today we associate it with 
what we see when we open a book of Euclid, or (if we are looking for its use 
in philosophy) what we see in Spinoza’s Ethics. Instead of a coherent fl ow of 
text, the lines are broken up into diff  er ent types of text— defi nitions, axioms, 
postulates, propositions, and demonstrations. Although geometrical method 
is oft en associated with such complicated mathematical procedures, the 
 great mathematician Pascal broke it down to only two essential rules in his 
fragment on the geometrical spirit that came down to us as a part of the 
Logic of Port- Royal: (1) not to employ any term whose meaning is not defi ned 
and (2) not to advance any proposition that is not demonstrated by known 
truths (Pascal 2000, 155–56).  Th ese  simple rules do not sound as if they can-
not be applied to disciplines other than mathe matics and it seems diffi  cult to 
understand what would be wrong with applying  these rules to philosophy.

What is in ter est ing from Pascal’s precise and brief formulation is 
the fact that it is not, as usually believed, demonstration that is at the heart 
of this method. Nor are axioms essential to the geometrical method as it 
is oft en said. Th is misconception sometimes leads to an inappropriate iden-
tifi cation of the geometrical method with the axiomatic method. However, 
the defi nitions are essential to the new geometrical method.  Every demon-
stration has to set out from a defi nition. It is nothing more than a deduction 
of concepts from the concepts virtually included in the defi nition at the be-
ginning. Hobbes considers a demonstration as a mere chain of defi nitions 
(OL I 252–58; De corpore 3, 20, §6), and Leibniz follows him in that.15 Given 
this crucial role of defi nitions for the new geometrical method, it does not 
come as a surprise that the concept of the defi nition moved to the center of 
the long- lasting discussion of geometrical method in the seventeenth and 
eigh teenth centuries.
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While the opponents of the geometrical method had to agree that its re-
sults did indeed produce necessary conclusions, to dispute the geometrical 
method they instead questioned the certainty of its very beginnings, of its 
foundation, that is, of defi nitions and axioms. Both of  these concepts be-
came the subject of hot debate. Th eir disputed status in terms of certainty 
served as a bulwark of the critics of the geometrical method (Pascal 2000, 
573 [no. 101]). Th eologians and other defenders of Christian religion pointed 
to axioms as undemonstrated assumptions and to defi nitions as arbitrary 
 human settings lacking the true essence of defi ned  things on which never-
theless all the wonderful demonstrations rested, thus making the entire 
building of mathe matics uncertain in its foundation.16

In princi ple, the prob lem with the axioms was easily solved by Hobbes, 
followed by Leibniz, by simply reducing axioms to demonstrations (OL 1 
105–6; De corpore 2, 8, §25; Leibniz A II, 1 281; A VI, 2 480). Both phi los o-
phers argued that axioms are indeed assumptions, considered self- evident 
and therefore accepted by every body. But as soon as anyone raised a doubt 
about any axiom it had to be demonstrated from defi nitions alone. Similar 
statements can be found in Spinoza.17 Hobbes and Leibniz both showed this 
in an exemplary way for the famous (and in their days suddenly disputed) 
axiom that the part is smaller than the  whole (Hoff mann 1974, 12–14; Gold-
enbaum 2008).

Th e question of defi nitions— whether they could be formulated at  will by 
 human beings and  were thus  under our control although lacking correspon-
dence to the essences of real  things, or if they  were something objective al-
beit incomprehensible— was more problematic. Th is discussion continued 
from the seventeenth  century well into Kant’s days. Th e point of disagree-
ment was  whether defi nitions of  things, which  were not mere products of 
our minds, but real  things, in de pen dent of our minds, could be defi ned by 
 human beings at all.18 Th e opponents argued that we had to empirically 
fi nd the real  things’ properties and to build nominal defi nitions of collections 
of properties of a  thing.  Th ere was no way to come up with essential defi ni-
tions as we could provide in mathe matics where we could construct the 
objects of our defi nitions and thus know their essence. Th e defenders of 
the use of the geometrical method beyond geometry emphasized the conti-
nuity between objects of pure mathe matics (which  were considered to be 
products of  human minds) and objects of natu ral science (which  were con-
sidered to be products of God’s creation), thus allowing the use of the geo-
metrical method within science and philosophy.19
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defi nitions in the framework of 
the new geometrical method

Arnauld and Nicole in their L’art de penser maintained the traditional distinc-
tion between nominal and real defi nition (Arnauld and Nicole 2011, 325–31; 
L’art de penser 1, 12), rooted in Aristotle’s Organon (Anal. Post. 2, 7–10). While 
the fi rst was nothing more than words by which we named  things,  either by 
convention or by custom, without knowing the essence of a  thing the latter 
would allow us to understand  whether the defi ned  thing was real or at least 
pos si ble in real ity. Pascal did not accept any other than nominal (i.e., merely 
arbitrary defi nitions).20 Likewise, he also saw axioms as a starting point 
without being able to secure their certainty, thereby making all our knowl-
edge generally limited.21 Denying our ability to come up with any real defi -
nition simply meant we could not know the essence of anything or, put 
diff erently, have any objective knowledge about the natu ral world. Th erefore, 
we had to rely exclusively on experience to know something about the ex-
ternal world. We could observe and look for regular patterns.

Although it is Th omas Hobbes who is oft en blamed for the doctrine that 
defi nitions are arbitrary, he in fact  rose to Pascal’s challenge. We have seen 
already that Hobbes successfully addressed the prob lem of the axioms by 
showing they could be demonstrated if needed. But he also developed a new 
general approach to the other prob lem— that of real defi nitions. Th e way he 
does this sheds quite some light on how the new geometrical method of early 
modern time was indeed new—he connects the issue of defi nitions with 
Galileo’s new science of mechanics.22 Hobbes considered geometrical fi gures 
as produced by mechanical motion. A circle is produced by the motion of 
one endpoint of a straight line around the other endpoint. Th us Hobbes fi rst 
introduced this new mechanical approach to defi nitions systematically into 
philosophy and demanded causal defi nitions (or ge ne tic defi nitions) in phi-
losophy in order to produce necessary conclusions about real ity. A defi nition 
that includes the mechanical cause of the  thing to be defi ned can serve to 
deduce all the properties of the  thing (OL 1 71–73; De corpore 1, 6, §13).23 
To wit, such causal defi nitions provide the opportunity to deduce any pos si-
ble property of the circle, even of properties of which we are not yet aware.

But while Hobbes and Pascal both claimed that defi nitions  were arbi-
trary, Hobbes accepted nominal (i.e., arbitrary) defi nitions only for “absolute 
knowledge,” that is, for factual knowledge. Such absolute knowledge, ac-
cording to Hobbes, is provided only through experience, and does not 
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require knowing the cause of the  thing (Hobbes 1994, 35; Leviathan vii, 3). 
Th erefore, in the case of empirical knowledge we are  free to name observed 
sensations and thus can produce arbitrary defi nitions. But when we can 
produce the mechanical cause of a  thing to be defi ned we can provide causal 
defi nitions. While we cannot draw any necessary but only probable conclu-
sions from nominal defi nitions, causal defi nitions guarantee necessary 
conclusions. Th is has been noticed in Hobbes scholarship in recent de cades 
(Jesseph 1999, 198–205).

Interestingly, Hobbes’s innovation of causal defi nitions was then  adopted 
(together with the geometrical method) by all rationalists—by Spinoza (TIE 
§69–71), by Leibniz (see below), and by Christian Wolff  (Cassirer 1974, 2:521–
25; Goldenbaum 2011b). With the exception of Spinoza, they hardly used the 
explicit form of the geometrical method but all their works follow this very 
method, that is, they begin with defi nitions and deduce the entire argument 
from them.24 It should be noticed that all rationalists  were mathematicians! Of 
course, Descartes and Leibniz  were geniuses in mathe matics whose achieve-
ments are still recognized  today. However, Spinoza and Wolff  well knew the 
most recent mathe matics of their time and could follow the ongoing discus-
sions. And the model for causal defi nitions is clearly the geometrical construc-
tion of fi gures. But neither Hobbes nor other rationalists stopped  there.

Th e new approach to geometrical method, based on a new concept of 
causal defi nitions, was no longer Euclid’s method but went far beyond 
his proj ect. Th e most signifi cant diff erence between the new geometrical 
method and what ancient geometers did is its extension beyond geometry. 
Th e most famous example is of course Spinoza, who wrote a metaphysics or 
rather an ethics according to this method. Descartes saw all his science 
as mere mathe matics (AT 2 268). But Hobbes had already claimed that 
 there cannot be any science that does not use the geometrical method or 
draw conclusions from causal defi nitions.25 While no merely empirical dis-
cipline could ever turn into science  because no result of  these disciplines 
could aim for certainty, that is, for necessary knowledge, mathe matics, optics, 
mechanics, and— famously— politics could become science  because they 
all started from causal defi nitions. Hobbes’s surprising inclusion of politics 
and Spinoza’s treatment of ethics among strict sciences follow precisely the 
model of the causal defi nition as suggested for early modern geometry: 
knowing the mechanical cause of a  thing, as the mechanical motion bring-
ing about a circle, leads to certain knowledge of the eff ect. Knowing the 
 mechanical  causes that bring about a commonwealth, we can know the 
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commonwealth, its rules and needs with necessity, with absolute certainty, 
a priori.26

Of course, all rationalists acknowledged the limits of their reason. Th ey 
already knew the dilemma famously formulated by Einstein: “How is it pos-
si ble that mathe matics, being a product of  human thinking in de pen dent of 
all experience, fi ts the objects of real ity? Can  human reason, without expe-
rience, explore the properties of real  things, by mere thinking?  Th ere is a 
short answer to this, according to my opinion: To the extent that the propo-
sitions of mathe matics relate to real ity, they are not certain, and to the ex-
tent they are certain, they do not relate to real ity” (Einstein 1921, 3–4). We 
could not know of external  things without experience and experience could 
not provide us with the essence of  things. We  were thus forced to give pro-
visional names, that is, nominal defi nitions, of the  things we knew through 
experience. Nominal defi nitions  were considered to be placeholders for the 
time being. Hybrids are considered pos si ble.  Th ere can be a  thing like a com-
monwealth, for Hobbes, Spinoza, or Wolff , which cannot be known through 
and through by causal defi nitions  because the biological nature of  human 
beings is still largely unknown. However, one can defi ne  human beings for 
the time being as animals with some use of reason, based on experience. 
Using  these provisional defi nitions, one can then fi nd merely theoretical 
explanations using nothing but known terms. In this way, one  will be able 
not only to explain the rules of politics or  human be hav ior but to predict 
other phenomena suffi  ciently.

Christian Wolff  used this method systematically to reduce the gap be-
tween a priori knowledge and experiential knowledge. Th at is not only true 
for his experimental physics. When he wrote about methods to increase 
the growing of grain, he distinguished between facts we know from expe-
rience and the  causes of some phenomena, which we know with certainty 
and have  under control (reproducing grain) (Wolff  1734; Goldenbaum 2011b). 
Although we cannot know the essence of the plants yet, we can come to 
know some causal pro cesses of the plants’ growth and can predict the out-
come with a high degree of certainty.

Spinoza used this geometrical method in his theoretical published work 
on ethics and in his work on politics and biblical hermeneutics. According 
to Tschirnhaus’s reports to Christian Wolff , Spinoza had developed a method 
for fi nding and constantly improving defi nitions in empirical natu ral sci-
ence27 using experiments, starting with arbitrary nominal defi nitions and 
increasingly replacing parts of them with causal defi nitions (Goldenbaum 
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2011b, 29–41). Tschirnhaus, who was above all a mathematician and engi-
neer (among other  things, he in ven ted Meissen porcelain), further developed 
this method of defi ning and redefi ning objects of natu ral science based on 
empirical research, as did Christian Wolff . It was their goal to improve the 
defi nitions of real  things, not only geometrical fi gures, in such a way that 
valid conclusions could be drawn from them necessarily, thus extending the 
realm of the geometrical method far beyond geometry. In their view, we 
could indeed learn to know such real natu ral  things in the same degree as 
God, although only to the extent to which we could generate them. Although 
we could not know natu ral  things thoroughly, we could always try to know 
some of their properties in a causal way and thus necessarily, or a priori.

All  these attempts clearly show that  these rationalists used the geomet-
rical method in the most general way to explain not only geometrical fi g-
ures but as many phenomena of the real world as pos si ble, by fi nding their 
causal defi nitions (using the analytical method). Th is is held to be true even 
if we can generate a  thing in a way diff  er ent from the way in which it was 
actually produced. Whenever a  thing is produced and is thus pos si ble,  free of 
contradiction, its essence can be known.  Th ese essences (i.e., causal defi ni-
tions) are connected to one another and have to be compatible, that is, they 
build a coherent conceptual structure of the world. Although we can only 
know a small number of particulars in such an a priori manner ( because we 
can generate them), due to their absolute certainty no empirical knowledge 
can ever contradict them. Th us we can know some eternal and fi xed struc-
tures, to which all empirical knowledge of par tic u lar  things must cohere, 
allowing us to build one coherent structure of the world (although it  will 
always remain incomplete). It is seldom noticed that exactly this position 
was already held by Galileo: “all  these properties [of  things in nature] are 
in eff ect virtually included in the defi nitions of all  things; and ultimately, 
through being infi nite, are perhaps but one in their essence and in the Di-
vine mind” (Galilei 1967, 104).

adequate ideas and causal defi nitions

Th e mathematician and rationalist Descartes did not speak of causal defi ni-
tions. But a kind of prehistory of causal defi nitions can be found in his dis-
cussion of adequate ideas with Arnauld, on the basis of Descartes’ Fourth 
Meditation. Th e term “adequate ideas” is, of course, more familiar to us from 
Spinoza and Leibniz, as well as from Wolff . (Hobbes did not use it, perhaps 
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 because of his avoidance of traditional scholastic metaphysics in general.) 
Descartes uses the term cautiously. He states, “if a piece of knowledge is to 
be adequate it must contain absolutely all the properties which are in the 
 thing which is the object of knowledge” (CSM 2 155; AT 7 220; Meditations, 
Fourth Set of Replies). Interestingly, adequate ideas have the same capacity 
as causal defi nitions, namely the capacity to virtually include all proper-
ties that belong to the cognized/defi ned  thing.

It is in this fi rst emergence of adequate ideas in rationalist modern phi-
losophy that we are likewise confronted with the sensitivity of theology re-
garding adequate ideas. Descartes immediately adds a caveat: “Hence only 
God can know that he has adequate knowledge of all  things. A created in-
tellect, by contrast, though perhaps it may in fact possess adequate knowl-
edge of many  things, can never know that he has adequate knowledge  unless 
God grants it a special revelation of the fact” (ibid., emphasis added). Why 
is the talk about adequate ideas immediately turning to theology?  Because 
having adequate knowledge of  things makes us like God— knowing  things 
as well as He does in His omniscience. Descartes was as aware as anyone of 
the theological concerns regarding Galileo. Th erefore, in spite of his enthu-
siastic statements about the certainty of deduction and intuition (both of 
which are available to us) in his early writings, especially in the Rules, he has 
to backpedal and grant that God could have made the world in a way that 
would be completely incomprehensible to us, in opposition even to what we 
hold to be mathematically necessary.28 Of course this position caused head-
aches for Leibniz and other rationalists.

Th is is not the only reason adequate ideas are, from their fi rst appear-
ance in Descartes’ discussion with Arnauld, an extremely sensitive topic in 
terms of theology. Th is discussion about the Fourth Meditation is titled “De 
vero et falso” and deals with the question of how error arises— although the 
perfect being, God does not deceive us. Descartes does not ascribe the rea-
son for our error to God or to  human reason. Rather, Descartes considers it 
to be an easy  thing to know many  things adequately as long as our vis co-
gnoscendi is adequate to the  thing to be known, “and this can easily occur” 
(ibid.). Descartes fi nds the cause of error, as we all know, in our  will. Th is is 
where Descartes strug gles to argue in  favor of the  free choice of our  will. 
And this topic of  free  will is obviously tainted by deep theological concerns.

What is impor tant for my point is rather Descartes’ fi rst concern. In 
order to know that we have the power to cognize  things adequately and to 
know “that God put nothing in the  thing beyond what it [our mind] is aware 
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of”—we would have to know every thing. Th us our power of knowing would 
have to equal the infi nite cognizing power of God, which is clearly impos-
sible. Descartes cautiously concludes that we do not need adequate ideas to 
conceive the real distinction between two subjects,  here mind and body. And 
he suggests that we may be content with “complete” ideas that would give us 
all the properties of a  thing (i.e., as much as an adequate idea) anyway with-
out claiming its adequacy. By this distinction of adequate and complete 
ideas, the fi rst owned by God alone and the second available to us, Descartes 
guarantees a limit to what can be known by  human beings. In his Rules and 
then in Discours, Descartes did attribute to  human beings a capability of 
knowing  things with certainty by relying on intuition and deduction, or the 
geometrical method.

Interestingly, Descartes’ cautious distinction between adequate and 
complete ideas was not upheld by his followers. For Spinoza it is precisely 
our adequate ideas that provide for our sharing of God’s intellect, allowing 
for certainty of our knowledge (E II, 37–40s2) and overcoming our lack of 
freedom (E IV). Adequate ideas  will even make us immortal (E V 38–42s). 
Spinoza defi nes “adequate idea” as “an idea which, insofar as it is considered 
in itself, without relation to an object, has all the properties, or intrinsic de-
nominations of a true idea” (E II, d4; C 447). Th us he explic itly denies cor-
respondence of an idea with an external object as a criterion for adequacy 
and thereby denies the traditional understanding of adequacy in Aristote-
lian scholastics as correspondence of idea and ideatum.29 For Spinoza, hav-
ing an adequate idea is to provide the proximate cause of the  thing to be 
known, that is, the idea that  causes an idea, or to defi ne a  thing by its cause, 
if considered  under the attribute of extension.

In contrast to Descartes, Spinoza holds that we can have such adequate 
ideas and produce more of them when following the geometrical method 
and working to obtain increasingly causal defi nitions (or at least partially 
causal defi nitions), using nominal defi nitions as mere placeholders. Of 
course, being fi nite, we can never come even close to God’s intellect. God 
knows every thing adequately and moreover intuitively; however, we can get 
to know some impor tant adequate ideas, which may then provide a general 
structure to lead our empirical research in a safe way. Th at is,  because “the 
fi xed and eternal  things” (TIE 101; C 41) are so closely connected to the par-
tic u lar  things, their knowledge  will help us to get a more coherent knowl-
edge of the latter. Th us Spinoza allows  human beings to have adequate ideas 
and even sees  these ideas as divine knowledge, which we share with God, 
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clearly deviating from the cautious position of Descartes. When Spinoza dis-
cusses inadequate ideas and explains error he even ironically uses the ex-
ample of  free  will as an exemplary inadequate idea (E 2 p35sch).

Interestingly, and seldom noticed, this rationalist position is very close to 
that of Galileo, who claims (just as the theologians complained in the earlier 
quoted trial fi le): “I say that as to the truth of the knowledge which is given 
by mathematical proofs, this is the same that Divine wisdom recognizes” 
(Galilei 1967, 103; emphasis added). Of course, Galileo admits a diff erence 
between divine and  human knowledge— a diff erence consisting in God’s 
thoroughgoing intuitive knowledge in contrast to  human discursive knowl-
edge. But still, he vindicates “a few” intuitive insights to  human beings too.30

Even Leibniz, the committed Christian phi los o pher, accepted that we 
have the capability to have adequate ideas. And he also agreed that they 
are the same in us as in God, to the extent that we have them,  because they 
are necessarily true. As Spinoza does, Leibniz connects them with ge ne tic 
or causal defi nitions, which necessarily provide truth. It is in ter est ing that 
in Wolffi  anism, when it comes to German translations, the term “idea adae-
quata” is bluntly translated as “complete idea” [vollständiger Begriff ] (Sit-
tenlehre 1745), thereby ignoring Descartes’ careful distinction between 
complete ideas available to  human beings and adequate ideas available to 
God. However, while all rationalists agree that  human beings can have a cer-
tain number of necessary demonstrations (i.e., a priori knowledge equaling 
divine knowledge, the latter claim not being shared by Hobbes), this view is 
moderated by their awareness that such a priori knowledge is very limited 
in  human beings and has to be supplemented by experience.

Leibniz on Causal Definitions, Adequate Ideas, and Necessitarianism

Given the theological concerns with the geometrical method and ade-
quate ideas, it is rather surprising how close the Christian phi los o pher Leib-
niz’s positions on  these topics came to  those of Spinoza and Hobbes, 
especially in light of the cautious attitude of Descartes about religiously 
sensitive issues. In his well- known Meditations on Knowledge, Truth and 
Ideas from the period of the mature Leibniz, the German phi los o pher in-
troduces a full- fl edged schema of diff  er ent types of ideas. He fi rst aligns 
with Descartes to distinguish between obscure and clear ideas but then fur-
ther splits the clear ideas into clear and confused and clear and distinct, 
thereby adding a new type: clear and confused ideas (L 291–95; A 6, 4, N. 
139, 585–86).31 Further, Leibniz divides distinct ideas into inadequate and 
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adequate ideas, and the latter again into symbolic or intuitive ideas. An 
idea is adequate if every thing that has gone into a distinct knowledge of the 
 thing is also known distinctly “or if the analy sis has been done to the end.” 
Th us, when we can provide distinct knowledge of all partial concepts of a 
concept we can know it adequately. Leibniz cautiously adds that he does 
not know  whether we have any perfect example of adequate ideas within 
 human knowledge but the knowledge of numbers would come close to it.

Adequate ideas— from Descartes via Spinoza to Leibniz— are  those that 
provide a complete knowledge of all the properties of their subject, in de pen-
dent of any knowledge of correspondence. How does Leibniz relate adequate 
ideas to causal or ge ne tic defi nitions? He explains this very systematically 
in a text he did not publish, On Synthesis and Analy sis (L 229–34; A 6, 4, N. 
129) (the title refers to the two aspects central to the geometrical method, as 
mentioned above). He begins with the traditional distinction of nominal 
and real defi nitions as still taught in the Logic of Port- Royal, but then em-
phasizes one par tic u lar kind of real defi nition, which displays the real ity of 
 things to us, namely causal or ge ne tic defi nitions. Starting with nominal 
defi nitions, the collection of names of properties of a  thing known by expe-
rience, he defi nes them as distinct concepts  because it is necessary to distin-
guish and name the single properties of the subject to come up with nominal 
defi nitions. Confused ideas though, for which we cannot give single prop-
erties although we somehow recognize a  thing in its entirety, do not allow 
yet for any defi nition. Th ey may be made more (and more) distinct though 
by analy sis, that is, by further distinguishing their parts.

In contrast to such nominal defi nitions, being a mere listing of proper-
ties or, rather, their names, Leibniz then defi nes real defi nitions as includ-
ing the possibility of the defi ned  thing, or freedom from contradiction. His 
example is— surprise!— the defi nition of a circle; specifi cally, Euclid’s defi -
nition of a circle as produced by the motion of a straight line in a plane 
around one of its unmoved endpoints. Th is defi nition, clearly a causal defi -
nition as introduced by Hobbes, is for Leibniz a real defi nition in an exem-
plary way  because it displays the demanded possibility of its subject. Leibniz 
does not even mention any other type of real defi nitions. He then somewhat 
laconically concludes: “Hence it is useful to have defi nitions involving the 
generation of a  thing, or if this is impossible, at least its constitution, that is 
a method by which the  thing appears to be producible or at least pos si ble” 
(L 230–31; A 6, 4, N. 129, 541). Just as Hobbes and Spinoza did, Leibniz  here 
extends the scope of causal defi nitions by way of any construction of a  thing 
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even if its  actual cause might have been another one. Any construction of a 
 thing that can generate it provides a clear guarantee of its possibility.

In the same work, Leibniz provides an explicit statement on the relation 
between an adequate idea and a ge ne tic or causal defi nition: such ge ne tic def-
initions are adequate ideas  because they immediately display the possibility 
of the defi ned  thing, that is, without an experiment or test or observation, as 
well as without the need to show the possibility of something  else in advance. 
Such an adequate idea is given whenever the  thing can be analyzed into its 
 simple primitive concepts, which is precisely the case in geometrical causal 
defi nitions. “Obviously, we cannot build a secure demonstration on any con-
cept  unless we know that this concept is pos si ble. . . .  Th is is an a priori reason 
why possibility is a requisite in a real defi nition” (L 231; A 6, 4, N. 129, 542).

It is somewhat ironic that Leibniz uses this opportunity to criticize 
Th omas Hobbes for having claimed (as indeed he did) that all defi nitions 
are arbitrary and nominal. Leibniz knew full well that Hobbes also pro-
vided the other type of causal defi nitions, as mentioned earlier, which are 
not arbitrary. Leibniz continues that we “cannot combine notions arbitrarily, 
but the concepts we form out of them must be pos si ble . . .  Furthermore, al-
though names are arbitrary, once they are  adopted, their consequences are 
necessary, and certain truths arise which are real even though they depend 
on characters which have been imposed” (ibid.).

Leibniz emphasizes the necessity of the consequences as they follow 
from adequate ideas— that is, from causal defi nitions.  Th ese adequate ideas 
or ge ne tic defi nitions are further praised for their special capacity: “From 
such ideas or defi nitions, then,  there can be demonstrated all truths with the 
exception of identical propositions, which by their very nature are evidently 
indemonstrable and can truly be called axioms” (ibid.). True axioms are ex-
clusively identical propositions. How close Leibniz is to Hobbes  here can be 
seen in the following sentence in which he makes the unusual claim that 
even common axioms can actually be demonstrated— which Leibniz had in 
fact learned from Hobbes very early in his philosophical  career (Golden-
baum 2008, 53–94). His critical statement against arbitrary defi nitions may 
thus have been directed at  those critics of the geometrical method who ques-
tioned it for its uncertain starting point— the axioms.

As is well known, Leibniz makes another bold claim, not so horrifying 
to mathematicians but to theologians. He says that a reason can be given for 
each truth “for the connection of the predicate with the subject is  either evi-
dent in itself as in identities, or can be explained by an analy sis of the terms. 
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Th is is the only, and the highest, criterion of truth in abstract  things, that 
is,  things which do not depend on experience— that it must  either be an iden-
tity or be reducible to identities” (L 232; A 6, 4, N. 129, 543).32 From  here, 
Leibniz states, the ele ments of eternal truths can be deduced and a method 
provided for every thing if they are only cognized as demonstratively as in 
geometry. Of course, God cognizes every thing in this way, that is, a priori and 
“sub specie aeternitatis,”  because He does not need any experience. While 
He knows every thing adequately and intuitively, we can grasp hardly any-
thing in this way and have to rely on experience. Notwithstanding, Leibniz 
then recommends the development of empirical sciences that combine a 
priori knowledge with experiment in mixed sciences, which are supposed 
to enrich  human knowledge.  Th ere is no question that Leibniz walks thereby 
precisely in the paths of Galileo, Hobbes, and Spinoza, being much less cau-
tious in terms of theology than Descartes.

avoiding the necessitarianism of the geometrical method

So, what is so problematic about the geometrical method? According to this 
new geometrical method, which epistemologically goes far beyond Euclid, 
we, as  humans, can have a priori knowledge, considered by rationalists (with 
the exception of Hobbes) to be divine knowledge, although of a very small 
number of  things.  Because we can deduce  every property from ge ne tic defi -
nitions, the degree of certainty of our knowledge of  these  things  will be no 
less than that of God’s knowledge, although He, of course, knows every thing 
intuitively while we know it for the most part by the hard work of demon-
strations. What is more challenging even, is that the converse is true as well: 
according to the new geometrical method, God’s capacity of knowing  things 
functions in the same way as that of our knowing. It is  because He con-
structed/created all  things in the universe that He knows them all a priori. It 
is only our fi niteness and our limited capacity for intuition that hinders us 
from knowing every thing a priori like the master geometrician God. As a 
result, the diff erence in knowledge between us and God would not be onto-
logical but merely a diff erence in degree. Th at is precisely what Galileo had 
claimed (who is oft en quoted but not as oft en fully understood); namely that 
the book of nature is written in mathematical signs (1960, 183–84). Taking 
the knowledge of every thing through causal defi nitions (that is, adequate 
ideas) into the scope of divine knowledge opens an ave nue for the endless 
extension of  human knowledge far beyond geometry.
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But this ave nue, potentially leading to necessary knowledge about every-
thing, seemed to lead into strict determinism, thus threatening  free  will. 
Th is can be seen in the cases of Hobbes and Spinoza, who both  were straight 
determinists. In contrast, it was precisely the recognition of this threat of 
determinism that led Henry More to his rejection of Descartes and even 
more of Cartesianism.33 Leibniz, embracing the geometrical method, was 
fully aware of his dangerous intellectual neighbors (heretics and determin-
ists), and worked hard to secure his metaphysics against strict determinism 
in order to distinguish his metaphysical and epistemological proj ect from 
theirs. He had been working on this since he fi rst studied Hobbes and Spi-
noza in Mainz between 1670 and 1672. Th e result is his well- known distinc-
tion of necessitating versus inclining at the end of the heading of paragraph 
13 of the Discourse on Metaphysics. But, notwithstanding his obvious rejec-
tion of Hobbes’s and Spinoza’s strict determinism, Leibniz clearly shares the 
new geometrical method, as a philosophical method, with the infamous 
phi los o phers. Moreover, it is this new method based on the ge ne tic or causal 
defi nition that provides the basis of Leibniz’s logic of containment (Di Bella 
2005, 80–95).

While only God can have a priori knowledge of the complete notions of 
individuals, we can at least have a priori knowledge of abstracta, although 
we have to rely on empirical knowledge when it comes to individuals (L 331–
38; A II, 2, N. 14). Th is distinction, closely related to the distinction between 
necessary and contingent truths, gave Leibniz suffi  cient confi dence to pres-
ent at least the headings of his Discourse on Metaphysics to Arnauld in 1686, 
with the long section 13 being especially provocative in res pect to  free  will. 
By this time, Leibniz had already worked out his new metaphysics (based on 
the problematic new geometrical method), which would make modern sci-
ence compatible with Christian dogmatics and  free  will with (soft ened) 
determinism.

Fi nally, in spite of Leibniz’s strong emphasis on the diff  er ent ontological 
status of specifi c/abstract truths and contingent truths (he held since the 
Confession of the Phi los o pher) and then on the logical distinction of concrete 
and abstract  things (since 1676) both aiming to secure contingency and to 
block strict determinism, he always maintains the containment theory. But 
this view (that the predicate of a true proposition must be included in its 
subject) clearly retains a general similarity between the two kinds of con-
cepts  because both— specifi c (or full) concepts of abstract  things as much as 
complete concepts of individuals— must include all their predicates and can 
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be known a priori by Him who generated them. Th is view is the core of the 
geometrical method! It was this theory that would lead to paragraph 13 of 
the Discourse of Metaphysics, according to which the complete concept of 
any individual was known by God and would include  every single event that 
would ever happen to us.

At fi rst glance, the mere claim that we cannot know individual  things 
by a priori knowledge as God does, but only by observation and empirical 
research, does not sound at all new or promising and seems simply to con-
fi rm God’s omniscience and the limits of our reason. Leibniz’s conception 
is more subtle, which can already be felt by the vehemence of the theologians’ 
protestations against him.34 According to Leibniz, even if  human beings 
cannot know individuals a priori but only through empirical study or by 
history, God does know the concepts of individual substances a priori. 
Moreover, God chose them as belonging to the best of all possible series of 
 things when He created this world.  Because of that choice, led by God’s in-
tellect,  there cannot be any contradiction among the  things of one series or 
one world. What is crucial  here is that Leibniz’s approach to contingent 
 things assures us— from the very beginning—of the coherence of all phe-
nomena of this world that  will ever occur to us in our experience. Th is is so 
even if we do not yet see it.  Because  there is nothing arbitrary in God’s 
creation— nihil sine ratione—we can take for granted that  there is a univer-
sal coherence of the world in spite of our own limited approach. It is this 
view that deviates from Luther and the Protestant way of thinking, wherein 
which such an intelligibility of the world to  humans is bluntly denied. Ac-
cording to that view,  human reason has been corrupt since the fall and thus 
must fail to understand. Moreover, we cannot even know  whether God 
would have wanted to create a coherent world. God is hidden from us and 
we can know about Him only through faith and revelation.

Leibniz is oft en said to be an optimist. Th e true optimism that can in-
deed be ascribed to the rationalist phi los o pher lies less in his belief that this 
is the best of all pos si ble worlds than in the comprehensibility of the world 
based on the comprehensibility of God, thanks to the new geometrical 
method, based on ge ne tic defi nitions. Moreover, this method not only en-
ables us to have a priori knowledge in mathe matics and other fi elds of merely 
conceptual knowledge, but provides us with a new approach to empirical 
research to obtain contingent truths. For Leibniz, learning the many predi-
cates of individuals through experience does not mean simply gathering 
and collecting data, and watching out for common patterns from which to 
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abstract rules. Rather, our gathered data are supposed to fi t into a larger 
theoretical framework, known by God and— partially—by us.

Th is framework includes of course  those full specifi c notions of ab-
stract  things, which we as  humans are able to know a priori  because their 
number of predicates is fi nite.  Because  these eternal abstract truths can 
never contradict any predicate of a complete notion, they can provide a 
strong framework for our empirical work, which is available to our fi nite 
knowledge. When we come to learn about new facts by experience and by 
history, we can expect  these single historical facts to fi t into the theoretical 
framework like the pieces of an unfi nished puzzle, and build a more com-
plete notion of an individual and its action.

Of course, this infi nite pro cess of learning can never be conclusive 
 because it is infi nite. Nevertheless, our expectation (based on the conviction 
of a theoretical framework that is known by God a priori and thus exists) 
together with the available specifi c notions of abstract  things we have at 
hand a priori, provides power ful tools. It is as if we had an unfi nished map, 
a compass, and a watch, which, with our general framework of terrestrial 
geography, can guide an expedition into an unknown area. Such equipment 
can help us to recognize coherence and causal interconnectedness in the 
other wise confusingly rich abundance of single facts of empirically obtained 
knowledge. Th erefore, Leibniz’s (Spinoza’s and Hobbes’s) approach to em-
pirical research is completely diff  er ent from any empiricist approach to na-
ture or history, the latter being a mere collecting of facts while looking for 
patterns or similarities to abstract from them, and thus to fi nd rules.

While we distinguish between natu ral science as hardcore science (such as 
physics, chemistry, biology or, increasingly, medicine) on the one hand and 
humanities and social sciences on the other, Leibniz (as well as Hobbes and 
Spinoza) instead distinguishes demonstrative knowledge (using specifi c 
notions and dealing with abstract  things such as geometrical fi gures) from 
the empirical sciences (relying on empirical knowledge in addition to a pri-
ori knowledge). Th us for Leibniz,  human history and the humanities are not 
 really diff  er ent from natu ral sciences in their searching for factual and con-
tingent truths connected through a theoretical framework of a priori eter-
nal truths available to us through the geometrical method. He was confi dent 
that empirical knowledge can be turned into science through a theoretical 
framework of a priori knowledge. Th is stands in sharp contrast to Locke. 
Leibniz is following the path of Hobbes and Spinoza, and he  will be in turn 
followed by Wolff  and Tschirnhaus.
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conclusion

Th e trou ble with the geometrical method in the seventeenth and eigh teenth 
centuries was neither its ponderous way of thinking nor its lack of success. 
Rather it was the turmoil about  human haughtiness and the threat that its 
determinism would destroy  free  will, the arbitrary choice of the  will of God 
as well as that of  human beings. Th e correspondence of Leibniz and Clarke 
exemplifi es the diff  er ent approaches to God’s  free  will. According to Leibniz, 
nothing can happen without a suffi  cient reason, which proves the existence 
of a God, who in His perfection could not have chosen an arbitrarily func-
tioning world. Clarke (and Newton), on the other hand, count any act of  will 
on God’s part as a suffi  cient reason (Leibniz- Clarke, 11; 2nd Reply, #1).

Two  things caused deep anxiety and anger regarding this method: (1) the 
attempt to extend the geometrical method to nature, to  humans, and to so-
ciety (taking mathematization of nature for granted), thus providing  human 
beings with a God- like a priori knowledge beyond mathe matics; and (2) the 
threat of determinism.  Th ese threats forced theologians and Christian phi-
los o phers to reject rationalism and the geometrical method altogether. In 
sharp contrast to rationalism, Locke would even deny the possibility of natu-
ral science  because we could not have any real defi nitions beyond mathe-
matics and morals: “Th is way of getting and improving our Knowledge in 
Substances only by Experience and History, which is all the weakness of our 
Faculties in this State of Mediocrity, which we are in this World, can attain 
to, makes me suspect, that natu ral Philosophy is not capable of being made 
a Science. We are able, I imagine, to reach very  little general Knowledge 
concerning the Species of Bodies, and their several Properties” (Locke 1975, 
645; Essay 4, 12, 10). Kant would declare that  there would “never be a New-
ton for a blade of grass” (Kant 2000, 268–71), pointing us instead to design 
theory in biology admitting causal explanations alone for mathe matics and 
mechanics, or applied mathe matics.

Th us, the opposition between the two philosophical camps of rational-
ism and empiricism was not the result of diff  er ent approaches to experience 
as is oft en claimed. Rather, it was their diff  er ent and opposing stances  toward 
the geometrical method and the mathematization of nature. Th is method 
was in no way external to rationalist philosophy. As much as rationalist phi-
los o phers diff er in their philosophical systems, they all agree that  human 
beings can arrive at a priori knowledge (through deducing from defi nitions), 
in de pen dent of experience, and that this knowledge is somehow “divine,” 
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that is, as certain as God’s knowledge. In contrast, empiricists and theolo-
gians are  eager to deny such a possibility, and therefore must rely exclusively 
on knowledge by experience. To be sure, empiricists do not trust experience 
any more than rationalists do. Rather they deny that we are capable of any 
better knowledge (except within mathe matics). Th us it is the diff  er ent ap-
proach to the new geometrical method that provides the explanation for the 
two schools of early modern philosophy. While rationalists see the mathe-
matization of nature and the geometrical method as ave nues to comprehend 
God’s creation, sharing a priori knowledge with Him, the empiricists ally 
with the Christian belief (emphasized more strongly by Protestants) that 
 human reason is corrupted due to the fall and that God as well as the es-
sences of the created  things are hidden from us. Th e geometrical method of 
the early modern period was much more than a way of demonstration. It was 
a new epistemological approach to true knowledge of the external world, 
based on the mathematization of nature, completely diff  er ent from any tra-
ditional, empirical approach of natu ral philosophy.
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notes

 1. Th e lit er a ture about the geometrical method in early modern phi-
losophy is to a large extent focused on Spinoza’s Ethics. See though Cassirer 
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1974, 1:136–44, 512–17, and 2:48–61, 86–102; Schüling 1969 (who confuses 
geometrical method with axiomatic method); see also Hecht 1991. On Spi-
noza’s use of the geometrical method, see Hubbeling 1964, 1977; Curley 
1986a; and De Dijn 1986. See also Curley 1986b; Klever 1986; Matheron, 1986; 
and Goldenbaum 1991.
 2. Due to the common confusion of axiomatic and geometrical 
method, Wolters even sees Spinoza’s Ethica more geometrico demonstrata as 
exemplary for the degeneration of the axiomatic method into a mere exter-
nal tool of pre sen ta tion. See Wolters 1980, 7.
 3. Th is was the view of Hegel and the German romantics which has been 
canonized in the infl uential German history of philosophy  shaped by Hegel’s 
view, as for example in Windelband: “Th e deep motion of a god- fi lled mind is 
expressed in the driest form, and the subtle religiosity appears in the stiff  ar-
mor of fi xed chains of conclusions” (Windelband 1919, 212; my translation).
 4. Breger calls the concept of motion an essential driving engine for 
the conceptual transition of mathe matics of the seventeenth  century, espe-
cially in the development of the concept of function. He continues: “Th e 
concept of motion has not only paved the way to the prob lem of rectifi ca-
tion, to the introduction of the transcendent, and as a tool to investigate 
limit pro cesses; it also contributed to legitimizing the continuum (and 
thereby eventually infi nitesimal methods). Th e concept of motion makes it 
implausible that the continuum could have gaps. Th e mechanical thinking 
makes the geometrical lines appear as homogenous and all points on them 
as equally justifi ed: the limitation to points and lines which can be con-
structed in this or that way, no longer appears as a necessary condition of 
exactness but as an unnatural limitation, which was to be overcome through 
a new boundary line between mathe matics and mechanics” (Breger 1991, 
45; my translation).
 5. “To clarify this fact one has to refl ect on the modern form of geom-
etry Spinoza had in mind. In fact, it is not the Euclidean but Cartesian ge-
ometry that is the systematic model for him. In analytic geometry, the 
number refers to space, i.e., a mere mode of ‘thinking’ refers to a mode of 
‘extension’ in such a way that a gapless, one- to- one correspondence hap-
pens between both.  Every dependence between fi gures in space is mirrored 
in a dependence between quantities in numbers: thus  here one and the 
same connection is expressed in two diff  er ent forms” (Cassirer 1974, 117–18; 
my translation); “En fait, l’idée du cercle est une image, resçue par’ l’esprit, 
une peinture faite à l’imitation d’un modèle externe; l’idée cartésienne du 
cercle est un concept né de l’activité proprement intellectuelle, de la force 
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native de l’esprit. Le cercle et son idée appartiennent à deux  orders diff  er ent” 
(Brunschvicg 1904, 771).
 6. “But  because the almighty God gave the ability to us  human beings 
to perfectly conceive the numbers and quantities, and did not keep any-
thing for Himself, we easily fall into the awkward thought that we could 
also be the master of all the other objects of our knowledge (cognoscibilia), 
and could have the suffi  cient reasons  under our control” (Löscher 1735, 119; 
my translation).
 7. “I only say this [ . . .  ] that the author deduces the stubbornness [of 
Pha raoh in Exodus 7, 13 and following] from the nexus or the fatal connec-
tion of all  things, and in this way ascribes it to God according to his preestab-
lished harmony. Th is nexus is the soul of the  whole system of the mechanical 
philosophy” (Lange 1735, 25; my translation). Th is is directed against the au-
thor of the Wertheim Bible, Johann Lorenz Schmidt, who had produced a 
Wolffi  an translation of the Pentateuch; cf. Goldenbaum 2004, 236.
 8. “Yes, one should accept, so to speak, only ge ne tic demonstrations, or 
 those that are taken from the generation of the subject, so that one  will 
know in advance perfectly, how the subject came about. . . .   Th ese demon-
strations are considered the only ones that provide science, a true knowl-
edge: from this it follows that all other knowledge, proved in other ways, is 
opinion only, and cannot be trusted” (Löscher 1735, 126; my translation).
 9. “Accordingly, we would have only nominal defi nitions of God and 
many other objects from where one could not even see  whether the  thing is 
pos si ble [rem esse possibilem]” (Löscher 1735, 129; my translation).
 10. “It is an obvious pedantry, if one plants oneself with one’s mathemati-
cal method in other disciplines so broadly; the most rude  thing, though, is 
 doing such a  thing with the Holy Scriptures and (N.B.) in theology” (Lange 
1735, 2, §4; my translation).
 11. “One takes such a reason not only to be a reason, or puts it as such in 
the intellect. It is supposed to be in real ity as well, and not in any diff  er ent 
way. ‘Suffi  cient,’ in this philosophy, does not mean something what we can 
be content with, knowing it according to its constitution. Nay, it means 
something so strong, perfect, and adequate, that it is suffi  cient everywhere, 
and nothing more can be asked without lacking reason” (Löscher 1735, 119; 
my translation).
 12. “6. Asserirsi e dichiararsi male qualche uguaglianza, nel compren-
dere le cose geometriche, tra l’intelletto umano e divino” (Dok. 20; Car. 
387r–393r).
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 13. Galileo makes Salvati refer to “our Academician,” obviously Galileo 
himself, “who had thought much upon this subject and according to his 
custom had demonstrated every thing by geometrical methods so that one 
might fairly call this a new science. For, although some of his conclusions 
had been reached by  others . . .  they had not been proven in a rigid manner 
from fundamental princi ples. Now, since I wish to convince you by demon-
strative reasoning rather than to persuade you by mere probabilities, I  shall 
suppose that you are familiar with pres ent- day mechanics so far as is needed 
in our discussion” (Galilei 1954, 6).
 14. Th us it became the strategy of Rüdiger, Hoff mann, Crusius, Löscher, 
and Lange to emphasize the fundamental diff erence between mathematical 
knowledge and scientifi c knowledge of natu ral  things whereby mechanical 
theory counted as applied mathe matics. Whereas mathe matics dealt with 
fi gures and numbers— produced by  humans and thus arbitrarily— natu ral 
science, as well as metaphysics and theology, dealt with God’s creation and 
thus with natu ral  things (see Löscher 1735–42, 128–29; 1742, 78). Th erefore, 
only mathematical concepts could be known by us in their very essence, 
whereas the essences of God’s creatures remained hidden to us. We could 
know them only by observation, experience (equated with sense perception), 
induction, and abstraction. Th is approach well explains the enthusiasm of 
German Pietism for Locke.
 15. Th e manuscripts of Leibniz’s Elementa Iuris naturalis can be seen as 
an exercise in demonstrating by chains of defi nitions (A VI, 1, N. 12). See also 
Leibniz’s letters to Chapelain from the fi rst half of 1670, in A VI, 1, N. 24.
 16.  Th ere are vari ous attempts to avoid the rationalist geometrical 
method by modernizing scholastic philosophy through empirical research, 
adopting ele ments of modern science while attacking the geometrical 
method, that is, the central role of causal defi nitions, if used beyond geom-
etry. Th us the L’Essai de logique, published by Abbé Edme Mariotte, a gift ed 
experimenter (coauthored by Roberval) appears as a turn against Galileo’s 
and Descartes’ mathematization of nature. Our knowledge of nature is 
restricted to observation and experiment (cf. Roux 2011, 63–67), a clearly 
empiricist move against disciples of Descartes. Mariotte considers even the 
princi ple of inertia as the result of experience (ibid., 104). On Roberval and 
Mersenne, see also Fouke (2003, 75–76).
 17. “What I want to emphasize about this passage is that in it Spinoza 
shows himself to be willing, when one of his fundamental assumptions is 
questioned, to provide further argument for this assumption. He does not 
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regard his axioms as argument- stoppers, princi ples so fundamental that 
they neither require nor can be given any further argument. Instead, he 
off ers to demonstrate his axioms by appealing to his defi nitions. It is in ter-
est ing that in the fi nal version of the Ethics all four of  these axioms are 
removed from the list of fundamental assumptions. Th ree become proposi-
tions. One becomes a step in a demonstration” (Curley 1986b, 157); see also 
Klever (1986).
 18. In full agreement with Lutheran theologians and with Crusius, Kant 
argues that philosophy cannot begin with defi nitions  because its objects 
do not depend on  human minds as the objects of mathe matics do [CrR 
B740–763]. He has to ignore however, to make this argument, that Wolff  (and 
other rationalists) are fully aware of this prob lem and indeed make the pro-
duction of good defi nitions of real/natu ral  things a task that has to precede 
any demonstration. In case no suffi  ciently clear and distinct defi nition can 
be found, a nominal defi nition can serve as a placeholder for the time be-
ing from which hy po thet i cal knowledge can be deduced as long as no con-
tradictions emerge. Th is is seen, to some extent, by Engfer (1982, 56).
 19. Th us, the young Kant sharply distinguishes between mathematical 
bodies and natu ral bodies whereby the former do not have any internal 
force while the latter in fact do own such a force: Th e latter “has a power in 
itself, through itself to enlarge the force which was awakened in it by an 
external cause of its motion, thus that it can include grades of force which 
did not originate from external cause of motion and which are larger than 
it. Th erefore they cannot be mea sured by the same mea sure as the Cartesian 
[mechanical] force and have another estimation” (KAA 1 140 §115).
 20. “On ne reconnaît en géométrie que les seules defi nitions que les 
logiciens appellant défi ntions de nom, c’est- à- dire que les seules impositions 
de nom aux choses qu’on a clairement designées en termes parfaitement 
connus; et je ne parle que de celles- là seulement. . . .  D’où il paraît que les 
defi nitions sont très libres, et qu’elles ne sont jamais sujettes à être con-
tredites; car il n’y a rien de plus permis que de donner à une chose qu’on a 
clairement désignée un nom tel qu’on voudra. Il faut seulement prendre 
garde qu’on n’abuse de la liberté qu’on a d’imposer des noms, en donnant le 
meme à deux choses diff érentes” (Pascal 2000, 156).
 21. “Nous connaissons la vérité non seulement par la raison mais encore 
par le cœur. C’est de cette dernière sorte que nous connaissons les premiers 
principes et c’est en vain que le raisonnement, qui n’y a point de part, essaie 
de les combattre” (Pascal 2000, 573).
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 22. Th e “mechanical” defi nition by mechanical motion to produce a geo-
metrical object occurred accidentally in ancient mathe matics, not in any 
systematic, conscious way though. See Breger 1991, and on Hobbes and 
Roberval see Jesseph 1999, 117–25; 1996, 86–92.
 23. “Hobbes does not think anymore of motion as an inner quality and 
constitution of bodies but as a mere mathematical relation, which we can 
construe on our own and therefore conceive. With this one step, the transi-
tion from Bacon to Galileo is accomplished. Th e analy sis of natu ral objects 
does not end in abstract ‘entities’ but in laws of the mechanism, being noth-
ing  else but the concrete expressions of the laws of geometry” (Cassirer 
1974, 2:47–48).
 24. While Leibniz hardly used this method explic itly (cf. though his 
treatise in  favor of the election of the Polish king, in Leibniz [1924–ongoing, 
3–98]; A IV, 1, N. 1), he completely agreed with Hobbes about demonstra-
tions as mere chains of defi nitions (Leibniz A VI, 1, N. 12; see also Leibniz 
A II, 1, N. 24, 153).
 25. “In his quatuor partibus continetur quicquid in philosophia natu-
rali, demonstratio proprie dicta explicari potest. Nam si phaenomenωn 
naturalium speciatim causa reddenda sit, puta quales sint motus, et virtutes 
corporum cœlestium, et partium ipsorum, ea ratio ex dictis scientiae parti-
bus petendea est, aut omnino ratio non erit, sed conjectura incerta” (OL 1 
62–65; De corpore i, 6, §6). “Scientia intelligitur de theorematum, id est, de 
veritate consequentiarum. Quando vero de veritate facti agitur, non proprie 
scientia, sed simpliciter cognitio dicitur. Itaque scientiae a quidem, qua sci-
mus propositum aliquod theorema esse verum, est cognitio a causis, sive a 
generatione subjecti per rectam ratiocinnationem derivate” (OL, 2:92; De 
homine ii, 10, §4).
 26. “And as the art of well building is derived from princi ples of reason, 
observed by industrious men that had long studied the nature of materials 
and the divers eff ects of fi gure and proportion, long  aft er mankind began 
(though poorly) to build, so, long time  aft er men have begun to constitute 
commonwealths, imperfect and apt to relapse into disorder,  there may princi-
ples of reason be found out by industrious meditation, to make their con-
stitution . . .  everlasting. And such are  those which I have in this discourse 
set forth” (Hobbes 1994, 220; Leviathan xxx, 5).
 27. I take it to be an understatement even when Curley states: “I am not 
persuaded that Spinoza was such a radical anti- empiricist” (1986b, 156). In 
addition to Spinoza’s own desire to develop a theory of experimentation 
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(TIE 102–3; C 42), we also have evidence from Tschirnhaus via Wolff  that 
Spinoza experimented himself (cf. Corr 1972, 323–34).
 28. “Pour les veritez eternelles, je dis derechef que sunt tantum veræ aut 
possibiles, quia Deus illas veras aut possibiles cognoscit, non autem contra 
versa à Deo cognosci quasi in de pen denter ab illo sint verae” (AT, 1: 145, 149–
50; Descartes to Mersenne, April 15, 1630 and May 6, 1630).
 29. “Seule la géométrie cartésienne permet de rapporter la vérité à 
l’autonomie de l’intelligence; les propriétés d’une courbe se déduisent en 
eff et de la défi nition analytique de cette courbe, c’est- à- dire d’une équation 
abstraite, sans recours à la considération directe de la fi gure. Seule elle 
permet d’interpréter la notion spinoziste de la convenance. La convenance 
n’implique plus l’antériorité de l’objet par rapport au sujet, mais la correspon-
dence du sujet qui comprend et de l’objet qui est endendu, le parallélisme de 
deux  orders d’existence qui ne suffi  sent à eux- mêmes, qui n’interfèrent ja-
mais” (Brunschvicg 1904, 772). Th erefore, adequatio in Spinoza is under-
stood completely diff erently from scholastic tradition, well known by 
Spinoza according to Brunschvicg.
 30. “Th e Divine intellect, by a  simple apprehension of the circle’s es-
sence, knows without time- consuming reasoning all the infi nity of its 
properties. Next, all  these properties are in eff ect virtually included in the 
defi nitions of all  things; and ultimately, through being infi nite, are perhaps 
but one in their essence and in the Divine mind. Nor is all the above entirely 
unknown to the  human mind  either, but it is clouded with deep and thick 
mists, which become partly dispersed and clarifi ed when we master some 
conclusions and get them so fi rmly established and so readily in our posses-
sion that we can run over them very rapidly” (Galilei 1967, 103–4; emphasis 
added). Th is is very similar to Descartes’ understanding of intuition as not 
exclusively instantaneous but also as a quick  running through: “necesse est 
illas iteratâ cogitatione percurrere, donec à primâ ad vltimam tam celeriter 
transierim, vt fere nullas memoriae partes relinquendo rem totam simul 
videar intueri” (AT 10 409 [Reg. XI]).
 31. I have discussed this momentous innovation of Leibniz elsewhere; 
see Goldenbaum 2011a.
 32. Loemker translates “justify” instead of “giving a reason,” which 
sounds to me more like Hume than Leibniz.
 33. “Sed si ullubi magnopere culpandus sit nobilissimus Philosophus, 
ob illud potissimùm eum reprehendum censeo, quòd Mathematico suo 
Genio ac Mechanico in Phenomenis Naturae explicandis nimium quantum 
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indulferit. Eam tamen interim agnosco summorum Ingeniorum felicita-
tem, ut vel vitia eorum & errores aliquam virtutis speciem habeant atque 
fructum. Et profectò mihi planè incredibile videtur, nisi ingentem illam 
spem concepisset demonstrandi Omnia ferè Mundi Phaenomena ex neces-
sariis Mechanicae legibus, eum unquam tot tantàque tentare voluisse, aut 
tentata potuisse perfi cere” (More 1711, 58).
 34. Th e following argument of a student of the infl uential Lutheran (Pi-
etist) theologian Budde addresses only one although central point of criti-
cism: “Nam tunc Deus mundum non eligit, quia optimus est, sed optimus 
est, quia eligit. . . .  Hinc quidquid Deus elegit . . .  non est optimum morali-
ter per se, sed ob Dei electionem” (Budde 1712, 72, §5).
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Since an exact science of [colors] seems to be one of the most diffi  cult 
 things that Philosophy is in need of, I hope to show—as it  were, by my 
example— how valuable mathe matics is in natu ral Philosophy. I there-
fore urge geometers to investigate nature more rigorously, and  those de-
voted to natu ral science to learn geometry fi rst. Hence the former  shall 
not entirely spend their time in speculations of no value to  human life, nor 
 shall the latter, while working assiduously with an absurd method, per-
petually fail to reach their goal. But truly with the help of philosophical 
geometers and geometrical phi los o phers, instead of the conjectures 
and probabilities that are blazoned about everywhere, we  shall fi  nally 
achieve a science of nature supported by the highest evidence.
— isaac newton, Optical Papers, 1672

It is common to regard newton as the apotheosis of mathe-
matized natu ral philosophy in the seventeenth  century. For example, the 
Principia Mathematica is the culmination of Dijksterhuis’s  grand narrative 
of mechanization (1961), marking the transition to a thorough mathemati-
zation of science. Accounts like this refl ect Newton’s transformative contri-
butions to natu ral philosophy and the central role of mathe matics in his 
achievements. Newton frequently characterized his methodology, as in the 
epigraph to this chapter, as distinctive and capable of achieving greater evi-
dential support than that of his contemporaries, due to its mathematical 
character.  Th ose guilty of blazoning about mere conjectures are presumably 
mechanical phi los o phers, including  those working in the Cartesian tradition 
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as well as members of the Royal Society such as Hooke and Boyle. Th e re-
mark cannot be dismissed as merely refl ecting the brashness of youth, the 
overly dogmatic stance of a twenty- seven- year- old that became more moder-
ate with age. Th e emphasis on the role of mathe matics in achieving certainty 
in natu ral philosophy, as well as the contrast with the errant ways of  others, 
recurs with variations in methodological remarks throughout Newton’s 
 career.

Newton’s pronouncements refl ect a striking position regarding the role 
of mathe matics in natu ral philosophy. We can give an initial characteriza-
tion of his position by considering two questions central to seventeenth- 
century debates about the applicability of mathe matics. First, how are we 
to understand the distinctive universality and necessity of mathematical 
reasoning? One common way to preserve the demonstrative character of 
mathe matics was to restrict its domain, as far as pos si ble, to pure abstrac-
tions. Th e subject  matter of mathe matics is then taken to be abstracted from 
the changeable natu ral world, consisting of quantity and magnitude them-
selves rather than the objects bearing quantifi able properties. Yet restrict-
ing the domain in this way makes it diffi  cult to see how mathe matics relates 
to natu ral phenomena. How could the book of nature be written in a lan-
guage of pure abstractions? Second, what is the proper role of mathematical 
reasoning in natu ral philosophy? Many followed Aristotle in consigning 
mathe matics to a subordinate role. On this view, mathematical demonstra-
tions do not contribute to scientifi c knowledge  because they do not proceed 
from  causes. Th e demand for such demonstrations was diffi  cult to satisfy 
in mathe matics, especially for  those who rejected formal causality. Mathe-
matics could not fulfi ll the main aim of natu ral philosophy, namely to pro-
vide demonstrations refl ecting the essences of  things and nature’s causal 
order. A related concern was also pressing for the mechanical phi los o phers: 
a merely mathematical demonstration fails to provide an intelligible me-
chanical explanation. For advocates of this line of thought, the very title of 
Newton’s masterpiece, Philosophiae Naturalis Principia Mathematica, would 
have been extremely perplexing: how could natu ral philosophy be based on 
mathematical princi ples?

Newton’s “mathematico- physical” approach, as Halley characterized the 
Principia in his ode, refl ected an alternative line of thought in seventeenth- 
century debates on the status of mathe matics. In par tic u lar, Th omas Hobbes 
and Isaac Barrow, Newton’s pre de ces sor as Lucasian chair, both held that the 
demonstrative character of mathe matics does not require a restriction to 
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quantity regarded abstractly. Hobbes’s materialist mathe matics left  no place 
for a distinction between “pure” and “applied” mathe matics: real bodies and 
their properties  were the proper subject  matter of mathe matics. Hobbes 
further argued that demonstrations proceeding from the properties of real 
bodies satisfi ed demands for knowledge based on  causes. For Hobbes the 
demonstrative character of mathe matics, far from confl icting with the in-
clusion of physical concepts regarding body and motion in the defi nitions, 
actually resulted from it.  Th ere was then no reason to regard mathe matics 
as inherently subordinate, unable to advance the aims of natu ral philoso-
phy. Like Hobbes, Barrow off ered a defense of the scientifi c status of mathe-
matics, but with geometric demonstrations satisfying a kind of formal 
causality. He also collapsed the distinction between “pure” geometry and 
physics. Barrow regarded geometrical objects as generated through motion, 
leaving no gap between space and continuous magnitude, studied geomet-
rically, and motions in real space, studied in physics. Newton developed a 
position similar to that of Barrow and Hobbes, although I  will not  here trace 
their infl uence in detail.

My aim is to articulate Newton’s position regarding the mathematiza-
tion of nature. Th is is challenging  because Newton, unlike Hobbes and Bar-
row, never stated a systematic philosophy of mathe matics. Yet it is crucial to 
articulate Newton’s position given his enormously creative and infl uential 
contributions to mathe matics and natu ral philosophy. On my reading, New-
ton regards the traditional response to the fi rst question, which takes math-
ematical concepts to apply to abstract rather than material entities, to be 
deeply mistaken. Newton holds instead that “rational mechanics” off ers as 
exact a description of material objects as the description of abstract alleg-
edly provided by mathe matics. Yet he does not take this exactness to be di-
rectly revealed in experience. An exact description underlies experience, but 
the under lying quantitative description can only be reconstructed from ob-
servations within an appropriate framework.

Regarding the second question, the aim of natu ral philosophy is taken 
to be the articulation of the appropriate framework for uncovering funda-
mental quantites and regularities. Newton develops an account of force in 
the Principia that provides such a framework, in that it underwrites theo-
rems relating properties of observed motions to properties of a given force 
law (and vice versa). Making a convincing case in  favor of the force of 
gravity to his contemporaries required overcoming opposition to this new 
approach to natu ral philosophy, which placed forces characterized quanti-
tatively at the center of investigation. It is also not clear how to bring to bear 
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the traditional demand that a demonstration must proceed from  causes. 
Mathe matics provides an inferential framework for understanding the forces 
relevant to phenomena, and for extracting an exact quantitative description 
of motion from inexact experience. While it is certainly appropriate to ask 
 whether this approach has succeeded in discovering the true forces of nature 
from complex phenomena, it is less clear that  there is a valid remnant of the 
Aristotelian demand for  causes.

Th is chapter  will develop and defend this reading of Newton’s position 
as follows. Th e next section focuses on Newton’s discussions of the nature 
and status of geometry in the preface to the Principia and related texts, in 
which he argues that mechanics and geometry do not diff er, as was tradi-
tionally assumed, in terms of their objects of study. Rather than treating 
geometry as a self- suffi  cient inquiry focused on distinctive, abstract entities, 
Newton characterized it as relying on rational mechanics for an account 
of the generation of geometrical objects, and diff ering primarily in its more 
restricted scope. Th e intelligibility of the objects of study for both geometry 
and rational mechanics depends on understanding how the object is gener-
ated; geometry describes objects as generated from a restricted set of allowed 
constructions, whereas rational mechanics studies real motions produced by 
forces. Th e next section relates Newton’s views on geometry to the aims of 
natu ral philosophy and how he pursued  these in the Principia. Natu ral phi-
losophy led Newton to extend geometry in two diff  er ent senses: fi rst, by re-
jecting Descartes’ restrictions to par tic u lar types of curves, and second, by 
including reasoning using fi rst and last ratios to allow treatment of instan-
taneous quantities. Th is extension was required to deal with the complexity 
of real phenomena. Newton’s sophisticated methodology, briefl y described 
 here, aimed to extract the under lying forces from a study of phenomena. 
Following  these discussions of the nature of geometry and Newton’s refor-
mulation of the aims of natu ral philosophy such that mathematical princi ples 
play a central role, the fi nal section turns to Newton’s views on the certainty 
of mathe matics.

geometry and mechanics

Th e Principia begins with a discussion of the relationship between geome-
try and mechanics:

Geometry does not teach how to describe  these straight lines and circles, but 
postulates such a description. For geometry postulates that a beginner has 
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learned to describe lines and circles exactly before he has reached the thresh-
old of geometry, and then it teaches how prob lems are solved by  these opera-
tions. To describe straight lines and to describe circles are prob lems, but 
not prob lems in geometry. Geometry postulates the solution of  these prob-
lems from mechanics and teaches the use of the prob lems thus solved. And 
geometry can boast that with so few princi ples obtained from other fi elds, 
it can do so much. Th erefore, geometry is founded on mechanical practice 
and is nothing other than that part of universal mechanics which reduces 
the art of mea sur ing to exact proportions and demonstrations. But since the 
manual arts are applied especially to making bodies move, geometry is 
commonly used in reference to magnitude, and mechanics in reference to 
motion. In this sense, rational mechanics  will be the science, expressed in 
exact propositions and demonstrations, of the motions that result from any 
forces what ever and of the forces that are required for any motions what-
ever. [ . . .  ] Since we are concerned with natu ral philosophy [ . . .  ] we con-
centrate on aspects of gravity, levity, elastic forces, re sis tance of fl uids, and 
forces of this sort,  whether attractive or repulsive. And therefore our pres-
ent work sets forth mathematical princi ples of natu ral philosophy. (Prin-
cipia, 381–82)1

 Th ere are several intriguing claims in this passage, which Newton explored 
at greater length in unpublished manuscripts.2 Although epistemology of 
geometry is not the central focus of an extended treatise,  these texts suffi  ce 
to elucidate aspects of his position and how it contrasts with views of his 
contemporaries.

Geometry is founded on mechanical practice in the sense that it turns 
to mechanics for the construction or generation of the objects used in geo-
metrical reasoning. Newton adopts a kinematic conception of geometry, in 
which an object such as a curve is understood in terms of how it can be gen-
erated by motion. One can impose restrictions on the permissible ways of 
generating curves and other geometric objects, such as using only a com-
pass and straightedge. But, as Newton emphasizes at the start of the passage, 
the repertoire of constructions is not the subject  matter of, nor is it fi xed 
by, geometry itself: mechanics rather than geometry determines the per-
missible constructions. Th is repertoire includes far more than straightedge 
and compass constructions. Newton’s rejection of constraints on the meth-
ods used to generate a curve is more explicit in the Geometria: “We are  free 
to describe them [plane fi gures] by moving rulers around, using optical 
rays, taut threads, compasses, the  angle given in a circumference, points 
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separately ascertained, the unfettered motion of a careful hand, or fi  nally 
any mechanical means what ever. Geometry makes the unique demand that 
they are described exactly” (MP 7:289). Newton’s only constraint on the 
generation of curves is that their construction must be “exact.”

Newton’s emphasis on “exactness”  counters a common view that the 
subject  matter of mechanics cannot be described with suffi  cient precision to 
be studied geometrically. He rejects the “common belief” that “nothing 
could possibly be mechanical and at the same time exact” as a “stupid one” 
(MP 7 289). Th e common view mistakenly treats the fl aws of par tic u lar in-
stances of manual generation of curves as a general failing of mechanics. Th e 
appropriate contrast, Newton argues in the Geometria, concerns the diff  er-
ent aims of mechanics and geometry: mechanics concerns the form and 
generation of continuous magnitudes, whereas geometry is the science of 
mea sure ment of such quantities. What Newton means by the exactness 
characteristic of both can be discerned in his formulation of a new set of 
postulates for geometry; the third postulate allows a quite general construc-
tion, which “has a kinship with mechanical description by moving rulers.” 
Th e third postulate states: “To draw any line on which  there  shall always fall 
a point which is given according to a precise rule by drawing from points 
through points lines congruent to given ones” (MP 7 389). Th e demand for 
exactness is refl ected in the requirement that  there is a precise rule for gen-
erating the curve. Newton goes on to discuss how this postulate licenses the 
construction of a wide variety of curves.

Newton implicitly rejects the criteria of intelligibility proposed in 
Descartes’ Géométrie, one of the texts that had inspired his early work in 
mathe matics.3 Descartes’ criteria was formulated in terms of the means 
of generating a curve as well as its algebraic repre sen ta tion, with the scope 
of geometry limited to curves generated via specifi c generalizations of com-
pass and straightedge constructions, or, expressed algebraically, to curves 
represented by closed polynomials. (Descartes hoped to prove that  these 
two characterizations  were equivalent, but failed [Bos 2001].) Th is excluded 
“mechanical” or “transcendental” curves from consideration, for example 
the logarithmic spiral and cycloid. Newton rejected both grounds Descartes 
gave for regarding such curves as falling outside the scope of geometry, and 
studied the properties of nonmechanical curves in his early mathematical 
research in the 1660s as well as the Geometria. Newton discovered how to 
represent this more general class of curves algebraically via an infi nite 
series expansion (Guicciardini 2009, chap. 7). We  will see the signifi cance 
of the resulting broader scope for geometry in the next section.
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Newton regards “rational mechanics” as the exact science of the genera-
tion of the motions of real bodies, due to the combination of inertia and 
forces acting upon them. Shift ing from “manual powers” to “forces” does 
not alter the idea that the intelligibility of a given curve depends on under-
standing how it is generated, given an appropriate conception of force. One 
of Newton’s achievements was the recognition of how much was required in 
clarifying the conceptions of inertia and force, in order to undertake the 
proj ect of determining the true motion of bodies.4 Unlike his contempo-
raries, he argued that providing an account of the dynamics governing mo-
tion could not be adequately founded on geometrical relationships among 
bodies alone, but required in addition an appeal to “absolute” structures 
(namely, intervals of spatial distance and temporal duration, and a way of 
identifying locations over time).  Th ese structures underwrite a contrast be-
tween inertial (moving in a straight line at uniform velocity) and noniner-
tial motion. With this contrast in place, it is in princi ple pos si ble to consider 
a physical trajectory as generated by the net force acting on a body in much 
the same manner as the geometry student manually producing a curve. And, 
importantly, it is pos si ble to draw inferences in the opposite direction as 
well: that is, given the trajectory, to determine the net force that would pro-
duce the required motion.

Geometry and rational mechanics are thus both exact sciences with a 
common subject  matter: geometry mea sures the properties of objects whose 
generation is described by mechanics. It seems more apt to call this physi-
calizing geometry rather than mathematizing the study of motion. Our 
sensible experience of the geometrical properties of objects and their trajec-
tories may be vague or inexact. Th e trajectories of real bodies are still suit-
able objects of study for mechanics and geometry, even though they are 
only accessible via a combination of observation and calculation. Th e ten-
sion between the exactness of geometry and mechanics and the character of 
sensations is resolved by taking geometry to apply directly to physical ob-
jects, whose geometrical properties are immanent in sensation rather than 
directly apparent. Since the properties are not ascribed to abstract mathe-
matical entities with a distinctive ontological status,  there is no place for a 
worry to arise regarding how mathematical entities can stand in relation to, 
or represent, physical objects.

Newton’s account of the nature of geometry stands in stark contrast with 
the Cartesian tradition, as well as the traditional Aristotelian account of 
pure and mixed mathe matics. Newton’s position was not unpre ce dented, 
and it is particularly useful to compare Newton’s position with that of 
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Barrow.5 Barrow’s Geometrical Lectures (2006) highlighted the utility of 
treating curves in terms of generating motions rather than as a collection 
of points. Several of Barrow’s pre de ces sors solved prob lems such as that of 
fi nding tangents and areas of a curve based on such a kinematic conception, 
but Barrow treated the generation of curves by motion as the appropriate 
foundation for geometry rather than simply a useful heuristic. Barrow 
argued further that the defi nition of curves in terms of their generating 
motions satisfi ed traditional demands for causal arguments, and regarded 
geometry as the most fundamental branch of mathe matics  because it deals 
directly with magnitudes generated by motion.6

Newton was almost certainly infl uenced by Barrow’s defense of the sci-
entifi c status of mathe matics in his earlier Mathematical Lectures. Barrow 
held that mathematical demonstrations satisfy a version of formal causal-
ity.7 He also addressed a prob lem facing any empiricist epistemology of ge-
ometry, namely how sense experience relates to geometric reasoning. Barrow 
characterized the contribution of sensation as limited to establishing that 
geometrical postulates refl ect a real possibility. We can see that a straight 
line is a real possibility by considering an  actual line, and further recogniz-
ing that  there is no obstacle to making it straighter. Sensation does not pro-
vide an inductive base for geometrical arguments, but instead establishes 
that geometrical postulates are not empty or vacuous. Against the view that 
geometrical objects are merely  mental entities, Barrow asserts that “all imag-
inable Geometrical Figures are  really inherent in  every Particle of  Matter,” 
even if they are inaccessible to the senses (Barrow 1734, 76), just as the statue 
is in a block of marble, waiting to be uncovered by the sculptor’s chisel. Bar-
row further rejected the traditional distinction between pure and mixed 
mathe matics. It was common, following Aristotle, to regard pure mathe-
matics as restricted to the study of quantities abstracted from material ob-
jects, whereas mixed mathe matics applied to the mathematical properties 
imperfectly instantiated by sensible objects. Since for Barrow the instantia-
tion of geometrical properties in sensible objects underwrites their intelligi-
bility, this contrast makes no sense. Barrow collapsed this distinction by 
taking geometry to apply directly to material objects, even though their ex-
act geometrical properties are not immediately revealed in sensation.

Th e Principia’s preface echoes this position, but Barrow’s eff ort to ground 
mathe matics solely on geometry, as he conceived it, is incompatible with 
Newton’s mathematical practice. By the time Barrow presented his Geomet-
rical Lectures in 1668, Newton had made many strikingly innovative dis-
coveries in what he called the fl uxional analy sis of curves. Newton’s fi rst 



316 christopher smeenk

treatise, “To Resolve Prob lems by Motion” (1666), began like Barrow with a 
kinematic conception of curves. Newton appeals to the continuity of mo-
tion generating a curve to justify the use of limiting procedures. Yet Newton’s 
development of the calculus depended on combining a kinematic concep-
tion with ideas from algebra foreign to Barrow’s approach. In par tic u lar, 
Newton discovered a generalization of the binomial theorem to noninteger 
exponents, which allowed him to treat curves such as the logarithmic spiral 
using an infi nite series expansion. Th is result was inspired by Wallis’s Ar-
ithmetica Infi nitorum, and Newton’s mature 1671 treatise develops fl ux-
ional analy sis based on a kinematic approach to curves used in concert with 
algebraic techniques.8

Th e importance of  these algebraic techniques is largely hidden from view 
in the Principia, which Newton wrote in a synthetic, geometric style. New-
ton’s wide range of mathematical techniques peeks through the chinks in 
the armor of synthetic geometry. Th e types of prob lems Newton handled 
earlier using fl uxional analy sis are treated in the Principia based on a geo-
metrical treatment of limits (described briefl y  later in this chapter). Newton 
had several reasons for adopting a geometrical style.9 For many of the prob-
lems in the Principia, geometrical methods may have been the most effi  cient 
and direct calculational tool. But it is also the case that Newton’s views re-
garding mathe matics shift ed, as he developed admiration for Greek geom-
etry based on studying Pappus and Apollonius in the 1670s. While I do not 
have the space to explore the issue fully  here, it is clear that the Principia’s 
proofs required combining geometrical reasoning (suitably extended) with 
a variety of algebraic techniques. Insights from fl uxional analy sis are cru-
cial in a number of places, for example the proofs in section 8 and in vari-
ous cases where Newton states the area  under a curve without specifying 
his method for fi nding it. Book 2 includes a terse summary of fl uxional 
analy sis in Lemma 2, which Newton needed to treat the prob lem of an object 
falling through a resisting medium. In sum, Newton extended the scope of 
“geometry” in the Principia to  handle a broad class of curves, leading to a 
much richer conception of geometry than that allowed by  either Barrow or 
Descartes.

Following his remarks on the relationship between mechanics and 
geometry, Newton turns to giving a positive characterization of the basic 
prob lem of natu ral philosophy— “to discover the forces of nature from the 
phenomena of motions and then to demonstrate the other phenomena from 
 these forces” (Principia, 382). Pursuing this proj ect is pos si ble  because the 
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trajectories generated by the interplay of inertia and the forces of nature can 
be determined exactly. Th e Principia off ers an understanding of physical tra-
jectories as generated by a combination of inertia and forces of nature that 
is analogous to that provided by a kinematical conception of geometrical 
curves as generated by a moving point or fi gure. Given this conception of 
rational mechanics as the proj ect of discovering the generating forces for the 
trajectories of real objects, a number of questions about “forces of nature” 
are pushed to one side. For the inferential connection between the forces of 
nature and phenomena of motion,  going in both directions, can be fully 
specifi ed given a mathematical characterization of the force, without an 
account of its under lying source. (Although Newton in vari ous places ac-
knowledges the interest of determining the seat or cause of the forces of 
nature, an answer to such questions would not alter the Principia’s proj ect. 
Hence the causal question, which Barrow responded to by defending a ver-
sion of formal causality, is left  aside.) Next I  will turn to study a few aspects 
of the argumentative structure of the Principia that refl ect Newton’s re-
sponse to the basic prob lem of philosophy. His response refl ects the chal-
lenge of accessibility of the true motions: inferring the true motions and 
the forces responsible for them from the complex apparent motions of 
bodies we experience is a laborious and diffi  cult, yet far from hopeless, 
undertaking.

 handling complexity in the principia

Th e Principia provides a framework for drawing inferences from observed 
trajectories to the under lying  causes of motion, namely inertia and forces. Th is 
is analogous to analytical prob lems in geometry, in which a curve is given 
and the mechanism for generating the curve is to be found. In the fi rst steps 
 toward the Principia, taken in the manuscript De Motu, Newton treated 
the planetary trajectories, in eff ect, as given curves from which he inferred 
an inverse- square force law. If Newton had left  it at that, the argument 
would have established the inverse- square force law for gravity in much 
the same way as earlier results had been established in Galilean- Huygensian 
mechanics: namely, that an inverse- square law produces trajectories with 
several striking features in common with observed motions. Even though 
the real motions are far too complicated for Kepler’s laws to hold exactly, 
the account would be explanatory in much the same way as Galileo’s treat-
ment of projectile motion, despite its failure to account for air re sis tance.
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It is a common  mistake, however, to read the Principia as giving noth-
ing more than a more elaborate version of this argument. Newton recog-
nized the limitations of this initial argument and developed a sophisticated 
approach in the Principia to overcome them.10  Th ere is a disanalogy between 
the analytic prob lem in geometry and the prob lem in natu ral philosophy: a 
trajectory is not “given” to the natu ral phi los o pher as the starting point of 
investigation, as it is to the geometer. Th e further steps Newton took in the 
Principia  were driven in part by the challenge of reaching conclusions re-
garding real motions despite their enormous complexity. Rather than low-
ering the standard of success to require only qualitative agreement with the 
phenomena, Newton proved a number of results that allowed him to assess 
the impact of removing vari ous idealizations.

From De Motu to the Principia
Christopher Wren off ered Edmond Halley and Robert Hooke the re-

ward of “forty- shilling book” for a proof that elliptical planetary trajec-
tories follow from a force varying as the inverse square of the distance from 
the sun. Neither of them was up to the challenge, and Halley posed the 
prob lem to Newton on a visit to Cambridge in 1684.11 Th e brief manuscript 
Newton composed in response would have been suffi  cient to secure New-
ton a place in the history of mechanics (Gandt 1995). Th e De Motu achieved 
a unifi cation of the Galilean- Huygensian theory of uniformly accelerated 
motion with Kepler’s treatment of planetary motion, based on Newton’s in-
novative treatment of force. But this was only the fi rst step on the road to 
the Principia.

Th e central result of the De Motu brings together a generalization of Gal-
ileo’s treatment of  free fall with Kepler’s area law, recognized as a general 
feature of motion  under a central force (i.e., a centripetal force whose mag-
nitude depends only on distance to the force center). Following Galileo, the 
distance traveled by a body starting at rest, undergoing uniform accelera-
tion, is proportional to the square of the elapsed time. Newton realized that 
this proportionality holds for fi nite elapsed times in the case of uniform ac-
celeration, but it is also valid instantaneously for arbitrary centripetal forces. 
A generalization of Galileo’s result then provides Newton with a precise 
quantitative mea sure of a trajectory’s deviation from straight, inertial mo-
tion at each point of the orbit given the magnitude of the force, which is al-
lowed to vary: the deviation produced by any centripetal force is proportional 
to the square of the elapsed time, “at the very beginning of its motion.”12 
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Newton next established, as his fi rst theo-
rem, that what we now know as Kepler’s 
area law holds for any central force: elapsed 
time of motion along the trajectory can 
be represented geometrically by the area 
swept out by a radius vector from the force 
center.

Combining  these two results leads to a 
general expression relating the geometri-
cal properties of the trajectory to the mag-
nitude of the force and the law describing its variation. Th e deviation 
produced by the force acting at point P is represented by a line segment QR, 
directed  toward the force center (in Newton’s fi gure, 3.1). Th is displace-
ment is proportional to the product of the force F acting on the body with 
the square of the time elapsed, QR ∝ F × t2, as shown by the generalization of 
Galileo’s law. From Kepler’s area law, t ∝ SP × QT, it follows that F ∝ QR/
(SP2 × QT 2).

Th is theorem also illustrates how Newton extended classical geometry 
to treat instantaneous quantities, without explicit appeal to fl uxional analy-
sis. Th e result holds instantaneously, in the limit as the point Q approaches 
the point P. Th e continuity of the generation of the curve guarantees, ac-
cording to Newton, that a limiting value for the ratio of evanescent quanti-
ties exists, and it is given by the ratio of fi nite quantities. Enlarging the scope 
of geometry to include line segments of varying length allowed Newton to 
 handle instantaneous quantities and the limiting be hav ior of their ratios. 
Newton used theorem 3 by establishing connections between the “evanes-
cent” fi gure QRPT and fi nite quantities characterizing the trajectory, such 
as the radius of a circle or the latus rectum of an ellipse. Th is leads to an ex-
pression for the force law entirely in terms of fi nite quantities unblemished 
by evanescent quantities that vanish in the limit as Q → P. Consideration of 
the fi gure QRPT thus allows Newton to  handle the diff erential properties of 
the curve geometrically.

With  these results, Newton generalized Huygens’s earlier treatment of 
uniform circular motion to arbitrary curvilinear trajectories, and this 
opened the way for considering a variety of forces suffi  cient for motion along 
diff  er ent plane curves. In par tic u lar Newton could directly address Wren’s 
question. Halley and his colleagues would have naturally wondered  whether 
an inverse- square force suffi  cient for perfectly circular orbits would have to 

Figure 1. Figure from proposition 6 in 
the Principia (and theorem 3 of the 
De Motu).
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be supplemented by a secondary cause to account for elliptical motion. New-
ton’s results show convincingly that a  simple inverse- square force alone is 
suffi  cient for Keplerian motion. But more impor tant, Newton concluded 
that planets held in their orbits by an inverse- square force directed at the sun 
move “exactly as Kepler supposed.” Kepler’s area law has special standing as 
a direct consequence of any central force, and Kepler’s fi rst and third laws 
hold for an inverse- square force, specifi cally. According to Kepler’s fi rst law, 
the planets follow elliptical trajectories. An inverse-square force directed at 
the focus is suffi  cient to produce this motion if, in addition, the second law 
holds with res pect to the focus of the ellipse (that is, the radius vector from 
the focus sweeps out equal areas in equal times). Th us, insofar as Kepler’s 
laws hold exactly for each planet, one can infer an inverse-square force be-
tween the sun and each of the planets. Kepler’s third law is a specifi c instance 
of a general result linking periodic times to the exponent in the force law 
(theorem 2). Furthermore, the ratio of the radii to the periods (a3/P2) is the 
same for all of the planets, leading to the conclusion that a single inverse- 
square force directed at the sun suffi  ces.

Th e Principia grew out of a number of questions provoked by De Motu.13 
One line of thought forced Newton to abandon the  simple picture of the 
planets following stable elliptical orbits, and the argument just summarized 
connecting  these motions with a force law. Th e motion of the planets was 
apparently due to an inverse- square force directed at the sun, and similarly 
the motion of Jupiter’s moons was due to an inverse- square force directed at 
Jupiter. How are  these forces related? Such questions may have led Newton 
to apply what became the Principia’s third law to combine the distinct forces 
due to the planets and the sun. Th en the planets can no longer be described 
as responding to a single inverse- square force directed at a fi xed sun, as  there 
are other forces to take into account: the attraction of the planets on the sun, 
causing it to orbit a common center of gravity rather than remaining fi xed, 
along with the interactions among the planets. Newton eloquently noted the 
consequences:

By reason of the deviation of the Sun from the center of gravity, the centrip-
etal force does not always tend to that immobile center, and hence the plan-
ets neither move exactly in ellipses nor revolve twice in the same orbit.  Th ere 
are as many orbits of a planet as it has revolutions, as in the motion of the 
Moon, and the orbit of any one planet depends on the combined motion of 
all the planets, not to mention the action of all  these on each other. But to 
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consider si mul ta neously all  these  causes of motion and to defi ne  these mo-
tions by exact laws admitting of easy calculation exceeds, if I am not mis-
taken, the force of any  human mind. (Hall and Hall 1962, 280)

Newton recognized the multifaceted challenge to reasoning from complex 
phenomena to the under lying forces, and book 1 of the Principia lays the 
groundwork for Newton’s response in book 3.

The Motion of Bodies

How is one to proceed in the face of curves that no  human mind can 
comprehend, as Newton so pointedly remarked? Th e results in book 1 of 
the Principia support a novel response to the challenges posed by the com-
plexity of real phenomena.14 Newton’s strategy proceeds in stages, begin-
ning with a heavi ly idealized and tractable description of motion, and 
adding complexity as demanded by observations. I  will emphasize three 
aspects of the Principia that are needed for this approach to be  viable: fi rst, 
the generality of Newton’s treatment of force and trajectories; second, his 
 handling of limiting relations to insure the durability of mea sure ments; and 
third, the controlled way in which he  handles idealizations.

Th e generality of Newton’s approach allows him to establish relation-
ships between trajectories and force laws, rather than simply giving a col-
lection of striking consequences for par tic u lar cases. Several theorems in 
book 1 hold for arbitrary central forces.15 Th e force law itself is the unknown 
quantity to be determined based on the phenomena, so this level of general-
ity is crucial. It leads to a much stronger inference, spanning a variety of al-
ternative force laws rather than restricting consideration to a single force 
law (as in the De Motu). Th e level of generality in the treatment of force is 
matched by the broad scope of curves Newton allows as pos si ble trajecto-
ries. Th e collection of curves deemed intelligible by Descartes did not 
include a pos si ble repre sen ta tion of the  actual trajectory traced by Mars 
(idealized as a point mass), as a result of the complexity Newton acknowl-
edged in the previous extract quote. Th is prob lem would arise even for the 
motion of a pendulum bob, idealized again as a point mass, in a Huygensian 
cycloidal pendulum. Newton also proved (in Lemma 28) that  there is no so-
lution in terms of a Cartesian geometric curve to the so- called Kepler prob-
lem, which arises in fi nding the position of a planet as a function of time on 
a Keplerian ellipse. Th e solution required the use of what Newton called 
“geometrically irrational curves,” which cannot be defi ned in terms of an 
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equation with a fi nite number of terms. Hence celestial mechanics forces a 
conception of geometry broad enough to regard such curves as legitimate.

Proposition 1.45 illustrates the importance of both senses of generality; 
it shows how apsidal motion depends on the exponent of the power law of 
the under lying force. Th e apsides are the points of maximum and minimum 
distance from one focus of an elliptical orbit; in the case of apsidal preces-
sion, a body does not form a closed orbit and the apsides shift  slightly with 
each revolution, by an amount given by the apsidal  angle. Th e fi rst corollary 
of 1.45 states that for nearly circular orbits if the apsidal  angle θ is given by 
n = (θ/π)2, then the force is given by f ∝ rn−3. Based on this result, specifi c 
phenomena can be taken as mea sur ing the par ameters appearing in the 
force law, in the sense that  there are lawlike connections between the phe-
nomena and par ameters, within some delimited domain.16 Establishing such 
connections requires quantifying over a range of diff  er ent force laws, which 
would not be pos si ble without Newton’s level of generality of force laws and 
trajectories. Furthermore, the relationship between the phenomena and the 
pa ram e ter of the force law is robust, in the sense that if the apsidal  angle is 
approximately θ, the force law is approximately f ∝ rn − 3. With this proposi-
tion in hand, Newton can infer that the force law is approximately inverse 
square despite the complexity of the planetary orbits—it suffi  ces to have es-
tablished that they are very nearly elliptical with stable apsides.

Th is general treatment of force and trajectories makes it pos si ble to re-
gard observed motions as “mea sur ing” par ameters of the force law. Th is is 
obviously a heavi ly theory- dependent account of mea sure ment. How stable 
are  these results as one adds complexity, or changes the theory? Section 10 
of the Principia provides an example of how Newton responds to this con-
cern, by considering the relation between earlier results regarding con-
strained motion, in par tic u lar Huygens’s treatment of pendulums, and his 
own approach.17

Several lines of argument in the Principia depend on using pendu-
lums as mea sur ing devices, and the case for universal gravity in par tic u lar 
relies on mea sure ments of the local strength of surface gravity and its varia-
tion with latitude. Yet the claim that appropriately designed pendulums 
mea sure surface gravity depends, in Huygens’s account, on a Galilean con-
ception of gravity, which treats gravity as uniform acceleration directed 
along parallel lines. Rather than simply making an argument that Huygens’s 
results are a useful approximation to universal gravity, Newton proves the-
orems that specify a precise limiting relationship (although Newton does not 
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explic itly state it in  these terms): Galilean gravity holds in the asymptotic 
limit of universal gravity at or below the surface of a uniformly dense spher-
oid as the ratio of any vertical distance of interest d to the radius of the earth 
R goes to zero, d/R → 0.18 Th is ensures that the relationships between physi-
cal quantities asserted in Huygens’s theory retain approximate validity. At or 
below the surface of a uniformly dense spheroid, Huygens’s results still de-
scribe lawlike relationships among quantities mirroring the lawlike relation-
ships within Newton’s theory. Th is claim is restricted to a specifi c domain, 
but it is the domain for which Newton needed to establish that pendulums 
could be used as mea sur ing devices.

Th e results in section 10 thus allow Newton to argue that Huygens had 
successfully mea sured the time of  free fall, not  because of his adoption of Gal-
ilean gravity as the under lying theory, but in spite of it. In the domain Huygens 
considered, the physical relationships asserted by the superseded theory of 
Galilean gravity approximately match  those of Newton’s own theory. Hence 
the mea sure ments of surface gravity— and, indeed, the entire body of evi-
dence in  favor of Galilean- Huygensian mechanics— could be subsumed 
within Newton’s theory. Evidence consisting of theory- dependent mea sure-
ments can be durable enough to survive transitions in under lying theory.

Turning to the third point, Newton notes that the fi rst ten sections of 
book 1 concern “bodies attracted  toward an immovable center, such as, how-
ever, hardly exists in the natu ral world” (1999, 561). Since gravity is a mu-
tual interaction, it is unphysical to regard one body as fi xed— instead, a 
system of interacting bodies  will orbit a common center of gravity. It is also 
unphysical to treat  these interacting bodies as if they are point masses, rather 
than having fi nite extent. Th e force the earth exerts on a nearby body is com-
posed out of the attractive forces on each part of the body from each part of 
the earth. Newton realized in composing the Principia that the resultant 
force may not have a  simple form even if the component forces do. Newton’s 
pre de ces sors oft en acknowledged similar limitations, then argued that the 
theory nonetheless provides an approximate description of the world. New-
ton’s response is strikingly diff  er ent, as he considers in detail the conse-
quences of relaxing both of  these simplifying assumptions.

Newton obtained limited results for systems of interacting bodies in 
section 11. A number of results regarding bodies orbiting a fi xed force cen-
ter carry over directly to the case of two interacting bodies. In the three- 
body case for an inverse-square force, Newton’s results consisted of a series 
of corollaries describing vari ous eff ects in a three- body system (such as the 
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earth- moon- sun system) in qualitative terms. Although Newton regarded 
 these as “imperfect,” they indicate vari ous consequences of treating the mu-
tual interactions among all three bodies. Sections 12 and 13 consider bodies 
of fi nite extent, and Newton established a remarkable feature of an inverse- 
square force law. For if we idealize the earth as a spherical body whose 
density varies with the radius, the total force on a nearby body  will be an 
inverse- square force directed at the center of the earth with the absolute 
mea sure of the force given by the total mass. He further proved the famous 
result that two spherical bodies interacting via an inverse- square force can 
be treated as mass points interacting with forces depending on their total 
masses directed at their respective centers.

 Th ese three sections reveal a quite sophisticated approach to  handling 
idealizations (Smith 2001; 2002b). Rather than treating his initial account 
as a good approximation despite its unphysical idealizations, Newton de-
veloped the mathe matics needed to assess the eff ects of removing the ide-
alizations. Th e initial account is itself exact, given a precise quantitative 
treatment, yet acknowledged to diff er from the true trajectory. Newton’s 
results, while incomplete, could be used to characterize qualitatively the de-
partures from the initial idealized treatment due to many- body interactions 
and the fi nite extent of real bodies.  Th ese results made it pos si ble to identify 
the kind of contrasts between theoretical calculations and observation one 
would expect to see as a result of specifi c idealizations, and to assess  whether 
removing a par tic u lar idealization would lead to an exact trajectory closer 
to the true trajectory. Many of the eff ects identifi ed in  these sections  were 
already relevant to assessing the application of the theory to the solar sys-
tem, treated in book 3.

Together  these three aspects of book 1 support an approach to the com-
plexity of real motions that proceeds in successive stages, dubbed the “New-
tonian style” by Cohen (1980). My characterization of this style follows 
Smith’s much richer accounts (2001; 2002b). At a given stage the physical 
trajectories  will be treated as if they  were produced by an explicit combi-
nation of forces. Th e resulting exact trajectory is expected to diff er from the 
true trajectory,  because the derivation, to be tractable,  will include a num-
ber of presumably false idealizing assumptions. Even so, the idealizations 
can be used in making inferences concerning values of physical quantities 
as long as  these inferences are robust, as in the case of proposition 1.45. Th is 
inference holds even if the physical trajectory is only approximately an el-
liptical orbit with stable apsides. Of course, this inference clearly depends 
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on the basic Newtonian framework and the earlier stages of the descrip-
tion of the system. Newton showed, however, that in the specifi c case of 
Huygens’s pendulum mea sure ments, conclusions based on mea sure ments 
in this sense can be durable through theory change.

Th e demand for exactness at each stage of inquiry also lends par tic u lar 
signifi cance to discrepancies between the calculated trajectories and obser-
vations. Results like  those in sections 11 through 13 put Newton in a posi-
tion to assess  whether par tic u lar systematic deviations from idealized models 
can be eliminated by dropping specifi c assumptions and developing a more 
complicated model. If the empirical deviations from the ideal case are of this 
kind, then the research program can proceed by relaxing the idealization. 
But it is also pos si ble to identify systematic deviations that instead reveal 
deeper prob lems with the entire framework of book 1, exemplifi ed by Mer-
cury’s anomalous perihelion motion. Newton’s treatment of idealizations 
allows for observations to continue to guide research, even though the iden-
tifi cation of the deviations in question presupposes that the simplest ideal-
ized models are approximately correct.

Arguing from the Phenomena

Th e body of results in book 1 provided Newton with mathematical tools 
to infer the under lying forces of nature from the phenomena of motion. Na-
ture also cooperated in providing a system of bodies that could be described 
to a very good approximation as interacting via a single force, whose motion 
had long been studied and described with obsessive precision. In the opening 
sequence of book 3 Newton argues from observed regularities of the motion 
of the planets and their satellites to the properties of the force of gravity.  Here 
is not the place to review that famous argument (see, in par tic u lar, Harper 
2011), but I  will briefl y contrast it with the argument in the De Motu.

Based on the results of the De Motu, Newton could have claimed that 
idealized descriptions of bodies moving in response to gravity agree quali-
tatively with observed planetary motions. Newton had shown that Kepler’s 
laws hold for bodies moving in response to an inverse- square force directed 
at the sun, regarded as fi xed. Yet  there are two shortcomings of an argument 
based on  these results. First, the inference presupposes that the planet moves 
exactly on an ellipse with a force directed at the sun at one foci; the argu-
ment does not apply to nearly elliptical trajectories or forces directed nearly 
at one foci.19 Once Newton considered the eff ect of mutual interactions, he 
realized that the planets do not follow exactly elliptical trajectories— blocking 
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the De Motu argument. Second,  there are challenges regarding the status of 
vari ous idealizations that could not be addressed. Is it legitimate, for example, 
to treat Mars and the sun as point- masses in calculating their trajectories, and 
to neglect the gravitational attraction Mars exerts on the sun?

In the Principia Newton overcame both of  these shortcomings. Th e 
opening sequence of book 3 gives an argument for universal gravitation that 
is robust, in the sense that the inferences do not require that the antecedent 
holds exactly in order to reach conclusions regarding the force law (as in 
proposition 1.45). Much of the remainder of book 3 is devoted to discussing 
the eff ects of dropping vari ous idealizations to give a more realistic descrip-
tion, for example in studying the earth- moon- sun system.  Th ese are the 
kinds of questions that the results discussed earlier put Newton in a posi-
tion to answer, albeit provisionally.

Th e further results in book 3 embodied a distinctive approach to prob-
lems in celestial mechanics that would set the agenda for the eigh teenth 
 century.20 Newton treated celestial motions as consequences of the gravita-
tional interactions among a system of bodies. Th e goal at any given stage of 
inquiry would be to provide an exact description of the motions that would 
result given several idealizations. Th is exact trajectory could then be com-
pared with observations. At each stage the theoretical description was well 
controlled in the sense that the idealizations needed to derive a specifi c so-
lution  were explic itly identifi ed. Any systematic discrepancies could then be 
used to identify physically signifi cant features that had been initially ex-
cluded in the description. Fi nally, Newton’s further results indicating how 
the be hav ior of the system changes as a result of dropping par tic u lar ideal-
izations provided the basis for distinguishing troubling discrepancies from 
 those that one could expect to be handled at the next stage of theoretical re-
fi nement. Insofar as one encounters only discrepancies of the latter sort, it 
is plausible to take the understanding of the physical trajectory as generated 
by the forces explic itly taken into account by that stage as very nearly accu-
rate, albeit not exact. One can imagine approaching a completely exact de-
scription of the physical trajectory, with a fully specifi ed account of the 
forces generating the motion, as a kind of limit. Th is should not be regarded, 
however, as approaching a closer and closer match with a preexisting de-
scription of the true trajectory. Th e proj ects of developing a more detailed 
theoretical account of the motion and of giving a more exact observational 
characterization oft en progressed in tandem. In many cases, without the 
structure provided by the theoretical skeleton, observations would remain a 
complex, amorphous mass.
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Th e prob lem of the moon exemplifi es the importance of Newton’s ap-
proach. Seventeenth- century astronomers strug gled to describe the moon’s 
motion with accuracy comparable to that achieved for the planets. In order 
to assess  whether the details of the moon’s motion  were compatible with 
gravitational theory, Newton had to fi rst develop a more accurate descrip-
tion of the motion itself, and he tackled the theoretical and observational 
prob lems si mul ta neously. Th e physical trajectory only becomes intelligible 
via a combination of observations and a theoretical understanding of how it 
is generated. Newton’s aim was to account for the vari ous known inequali-
ties in the lunar orbit as a consequence of the perturbing eff ect of the sun’s 
gravity and other features of the earth- moon- sun system. He was ultimately 
not able to make substantial pro gress with regard to accuracy over the ideas 
of Jeremiah Horrocks, which  were formed in the 1630s. Newton’s approach 
to the prob lem proved to be more infl uential. His eighteenth- century succes-
sors  were able to employ new mathematical methods that made it pos si ble to 
enumerate all of the perturbations at a given level of approximation, namely 
as all of the terms at a given order in an analytic expansion. It was only with 
a more sophisticated mathe matics that astronomers could fully realize the 
advantages of approaching the complexities of the moon’s motion via a se-
ries of approximations. Although it drew on tools unavailable to Newton, 
this work followed Newton’s approach to achieving high levels of precision 
by using a series of well- controlled idealizations.

mathematization and certainty

Newton directly addressed the contribution mathe matics makes to achiev-
ing the “highest evidence” for claims in natu ral philosophy in only a few 
places in his published work; in addition to the Principia’s preface, the most 
detailed discussion appears in query 31 of the Opticks (1717). Newton’s main 
concern was to characterize his natu ral philosophy in terms of analy sis and 
synthesis, as part of a defense of his methodology and its fruits in reply to 
continental critics. As Domski (2010) has emphasized, in this and similar 
passages Newton locates his methodology in a historical tradition, as a 
revival and extension of ancient mathematical practice. Th is concern is 
nearly orthogonal to questions regarding the epistemology of geometry 
that are our main focus. Guicciardini (2009) provides a thorough exegesis 
of query 31 and related passages, drawing on a careful assessment of analy-
sis and synthesis in Newton’s mathematical practice (309–28). Yet, as 
Guicciardini acknowledges,  these passages are not suffi  cient to elucidate 
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Newton’s philosophy of geometry. Hence, I  will turn to an unpublished 
manuscript customarily called “De Gravitatione” (hereaft er DG), rather 
than Newton’s sparse methodological remarks. Passages in the DG suggest 
that Newton regarded the certainty of geometry as grounded in knowledge 
of the nature of space. For the metaphysical account of space to play such a 
role, we must have access to its structure.  Here I  will briefl y consider the 
epistemology of geometry suggested in the DG, and argue that in the Prin-
cipia geometry becomes entangled with dynamics.

Much of DG is devoted to a detailed critique of Cartesian views regard-
ing space, body, and motion. Newton argued, in contrast to the Cartesian 
identifi cation of space and body, that an adequate defi nition of motion had 
to be formulated in terms of “some motionless being such as extension alone, 
or space in so far as it is seen to be truly distinct from bodies” (Newton 2004, 
20–21). His ensuing discussion of the ontological status of this distinct 
entity and its properties sheds some light on the status of geometry. Th e 
object of geometry is clearly space itself, and not, by contrast with Barrow, 
properties of objects. Barrow held that  were “the Hand of an Angel” to pol-
ish a solid particle of  matter, a perfectly spherical surface would be revealed. 
Sphericity is a property of a particle of  matter, rather than being a  mental 
entity or having a distinctive mode of being. Newton also rejected the latter 
two options, but ascribed geometrical properties to space rather than bodies: 
“For thus we believe all  those spaces to be spherical through which any 
sphere ever passes, being progressively moved from moment to moment, 
even though a sensible trace of that sphere no longer remains  there. We fi rmly 
believe that the space was spherical before the sphere occupied it, so that it 
could contain the sphere; and hence as  there are everywhere spaces that can 
adequately contain any material sphere, it is clear that space is everywhere 
spherical” (Newton 2004, 23). Newton attributed geometrical properties to 
all regions of space. He further argued that bodies bear geometrical proper-
ties derivatively, as “determined quantities of extension” endowed with addi-
tional attributes, such as impenetrability. Fi nally, the geometrical structure 
ascribed to space itself, along with an in de pen dent structure relating loca-
tions at diff  er ent times, is necessary, as Newton argued in a famous rebuttal of 
Descartes, for an adequate defi nition of motion.21

Some of Newton’s remarks in DG suggest a straightforward empiricist 
conception of geometry. Th e main challenge facing such an account, as Tor-
retti (1978) succinctly put it, is that “geometrical objects [ . . .  ] are nowhere 
to be found in experience exactly as geometry conceives them” (254). Bar-
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row and Newton alike regarded geometry as treating properties of real 
entities— bodies and space itself, respectively— that are not directly pres ent 
in experience. How then does experience bear on the concepts and theorems 
of geometry? Barrow’s position seems to be that experience can establish the 
existence of geometric properties. Any  actual line is not straight, for exam-
ple, but we can see that it can always be straightened, leading to a geometric 
line as a limit. It is unclear exactly how experience reveals that this refi ne-
ment of our experience is a real possibility.22 Newton held that space itself is 
insensible, so its structure must be discerned based on the geometric prop-
erties of objects. We obtain the idea of space from experience by abstracting 
away dispositional and sensible features of bodies, leaving us with an “ex-
ceptionally clear idea of extension,” namely “the uniform and unlimited 
stretching out of space in length, breadth and depth” (Newton 2004, 22). In 
this context, the question analogous to that confronting Barrow regards how 
the character of sense experience justifi es this “clear idea” and the six prop-
erties of space Newton goes on to elucidate. Taking bodies as the basis for 
abstraction is particularly problematic given the status of Newton’s account 
of body in DG: he presented it as suffi  cient to ground our sense experience, 
but did not claim that it is the only such account (McGuire 2007, §6; Stein 
2002). Such an uncertain account of body cannot provide fi rm foundations 
for geometric knowledge, and in any case Newton’s arguments do not fol-
low Barrow’s approach in appealing to abstraction and refi nement of our 
experience of bodies.

Newton’s argument for the infi nity of space, the second property he dis-
cusses at length, takes a quite distinctive approach: it depends on a  simple 
geometric construction, carried out in the imagination. Th is appeal to the 
imagination, as a form of access to truths about the nature of space, marks 
a further critical response to Descartes.23 Descartes rejected the scholastic 
idea that knowledge of geometry is derived from sense experience via a pro-
cess of abstraction, and instead held that geometry makes claims regarding 
the true and immutable natures of geometric objects. Th e eternal and im-
mutable natures exist, in some sense, as innate ideas in created minds. New-
ton clearly did not adopt this Cartesian approach fully; in a  later unpublished 
manuscript intended as a fi ft h rule for philosophizing (to be added to  those 
in the Principia), prob ably refl ecting Locke’s infl uence, Newton explic itly re-
jected the possibility of innate ideas (Koyré 1965, 272). Yet the argument for 
the infi nity of space is based on the ability to imagine the following construc-
tion (cf. Domski 2012). Consider opening up a given triangle by rotating one 
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of its sides around a vertex, with the other sides fi xed, and defi ning a se-
quence of points where the line segment extending the rotated side meets a 
line segment extending the opposite fi xed side.  Th ere is no fi nal point of this 
sequence; Newton concluded that the real line defi ned by the sequence is 
longer than any fi nite length. Th e contrast with Descartes is clear, regarding 
both the strength of this conclusion (namely, that space is infi nite rather 
than merely of indefi nite extent, as Descartes held) and the roles of imagi-
nation and understanding. Newton further argued that we can understand 
the infi nity of space positively rather than merely as a lack of bound aries, as 
illustrated by geometrical objects with fi nite surface areas and infi nite 
lengths.24 Th e  later manuscript “Tempus et Locus”25 includes a wide variety 
of other examples illustrating our ability to comprehend infi nite quantities 
in mathe matics.

It is challenging to fi nd a coherent epistemology of geometry in the DG. 
Although I  will not argue the point  here, on my reading  there are unresolved 
tensions among the lines of argument Newton gives regarding the nature of 
space.26  Th ese tensions can be avoided to some extent  because the diff  er-
ent properties of space Newton considers are nearly in de pen dent of one 
another. Th e infi nity of space does not determine the other local features 
Newton identifi es, such as Euclidean geometrical structure ascribed directly 
to space, and the relation among spaces at diff  er ent times needed to defi ne 
motion.

More impor tant, however, I regard DG as a transitional text in which 
Newton had not fully developed the insights regarding dynamics that are 
crucial to the Principia. Th e accounts of body, space, and time, and the rela-
tions among them, diff er substantively in the Principia and in  later texts 
such as “Tempus et Locus.”27 Far from providing philosophical founda-
tions for the account of space and time in the Principia, as Domski (2012) 
argues, DG was written prior to Newton’s recognition of the importance of 
specifying par tic u lar mea sures of space and time and the full implications 
of the relativity of motion.  Th ere are only hints of Newton’s innovative con-
ceptions of force and mass in DG (Biener and Smeenk 2012), and develop-
ing  these ideas led to the distinctive account of geometry refl ected in the 
Principia’s preface and related texts discussed earlier in this chapter. Th e 
considerations of mea sure ment and dynamics that are central to the Prin-
cipia lead to a physical conception of geometry. On this account, the geo-
metrical properties of space are related to sense experience only quite 
indirectly, by virtue of their role in a dynamical account of motion.
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Th e Principia starts with the phenomena of motion and our observations 
of the trajectories of bodies over time. All of our descriptions of motion 
are implicitly made with res pect to some relative space— for example, the 
motion of balls dropped from the dome of St. Paul’s Cathedral (in one of 
Newton’s experiments)  was described relative to the building, with times 
determined by a pendulum clock. An initial description of the trajectory of 
the body could start by assigning spatial dimensions with res pect to this 
relative space; obviously, the trajectory  will generally not be the same with 
res pect to a diff  er ent relative space. In formulating the relativity of motion 
in corollaries 5 and 6, Newton recognized that some specifi c choices of rela-
tive space do not lead to any dynamical diff erences in the descriptions of the 
motion; in anachronistic language,  there is an equivalence class of relative 
spaces that give dynamically equivalent descriptions.  Th ere are also rela-
tive spaces that do lead to dynamical diff erences. If the relative space used to 
describe  these motions is itself rotating, as St. Paul’s does due to the motion 
of the earth, the true forces arising as interactions among bodies  will not 
match the observed accelerations (due, in this case, to the Coriolis force). In 
princi ple, once such an acceleration is discovered one could describe the 
motion more accurately using a diff  er ent relative space (in this case, by ac-
knowledging earth’s motion), with the hope of eventually determining the 
true motions. At the end of the famous scholium on space and time, Newton 
remarks that the entire Principia was composed so that the true motions 
could be found, and that “the situation is not entirely desperate” (Principia, 
414). A relative space that is not suitable should always be revealed, in 
princi ple, by bodies accelerating without an identifi able physical force, but 
isolating such an eff ect requires fi rst identifying and characterizing all the 
other forces relevant to the bodies’ motion— and  doing so requires employ-
ing the full framework of the Principia. Th e results described earlier in this 
chapter provide the framework to carry out a study of this kind for real mo-
tions, such as the motion of the objects in the solar system. Newton’s success 
in characterizing a single force responsible for all of  these motions, despite 
their complexity, makes a compelling case against desperation, in the sense 
that the study of trajectories within the quantitative framework of the Prin-
cipia suffi  ces to establish the under lying dynamics.

Geometrical ideas enter into this description of motion in two diff  er ent 
senses. First,  there are the mea sure ments of geometrical properties and con-
gruence made with res pect to a chosen relative space, which are refi nements 
of our subjective experience of distances and times. Geometry in this sense 
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is not tied to the structures of “absolute space” described in DG,  because the 
relationship between the chosen relative space and absolute space is un-
known. Absolute space is itself insensible, as Newton remarks (Principia, 
414), and the connection between a given relative space and absolute space 
arises only at the end of inquiry, so to speak— corresponding to a stage of 
inquiry in which all accelerated motions have been attributed to a physical 
force, with no discrepancies. Despite the inaccessibility of absolute space, it 
plays a fundamental role in Newton’s dynamical analy sis of motions: the 
crucial distinction between accelerated and nonaccelerated motion cannot 
be adequately captured, as Newton famously argued in the Scholium, in 
terms of motion with res pect to relative spaces. Second, geometry enters di-
rectly into the formulation of the dynamics, as part of the characterization 
of the force law. Th e force of gravity, for example, depends on the distances 
among interacting bodies. Yet the geometrical structure required to fulfi ll 
this role is evanescent, in the sense that the force law depends only on the 
confi guration of bodies at a given instant.28 Th is second sense of spatial ge-
ometry connects back to the fi rst via a dynamical account of how spatial 
mea sure ments can be performed— for example, by using rigid bodies that 
can be moved from one location to another in order to make assessments of 
congruence. Th e subtlety of this connection between the dynamical role of 
geometry and geometrical properties revealed by mea sure ments follows 
from the relativity of motion. Th e instantaneous geometrical properties may 
be shared with res pect to diff  er ent relative spaces, yet comparisons of loca-
tions at diff  er ent times, as  will be required for any spatial mea sure ments, 
implicitly depend on a specifi c choice of relative space.

conclusion

In closing, let me return to the general theme of the mathematization of na-
ture by refl ecting on the sense in which Newton’s natu ral philosophy is 
based on mathematical princi ples. I have argued that Newton rejected one 
objection to this idea as simply refl ecting a confusion: mechanics is no less 
exact in describing its objects of study than geometry. Th is is particularly 
clear given his kinematic conception of curves and its close parallel with the 
mechanical generation of curves via forces. Yet in order to maintain that 
geometry studies the properties of material rather than abstract entities, 
Newton is forced to regard  these properties as remote from direct sensory 
experience. Th e main challenge is then one of epistemic accessibility: granted 
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that  there is an under lying quantitative structure that it is the aim of natu-
ral philosophy to uncover, how can this be done? Th e most striking aspect 
of the Principia is the depth of Newton’s insight and mathematical resource-
fulness in responding to this prob lem. Th e Principia’s mathematical frame-
work provided a way of reasoning from the evidence provided by observed 
trajectories to claims about the under lying dynamics. Th e use of a mathe-
matical framework to implement research via a controlled sequence of 
successive approximations is Newton’s most infl uential contribution to the 
mathematization of nature within physics. Th e object of geometry, absolute 
space, is pushed to lie beyond our pos si ble sense experience, as an ideal limit 
that may be reached only at the end of the series of successive approxima-
tions. It is then no surprise that Kant identifi ed the nature and status of our 
knowledge of geometry as a pressing foundational prob lem for Newtonian 
science.

abbreviations

mp Whiteside,  D.  T. 1967–81. Th e Mathematical Papers of Isaac Newton 
(MP is followed by a number that represents the volume, sometimes fol-
lowed by page numbers)

notes

 1. References to the Principia are to Newton 1999 [1726].
 2. Th e unpublished manuscripts include, in par tic u lar, the Geometriae 
(ca. 1692, published in MP, 7), a long treatise on geometry Newton undertook 
in the 1690s, whose opening discussion amplifi es the themes of the preface, as 
well as shorter fragments. My comments  here are indebted to the discussion 
in Guicciardini (2009, chapters 13 and 14) and Domski (2003; 2010).
 3. See Domski (2003). Newton also criticizes the Cartesian, algebraic 
approach to the classifi cation of curves in the Appendix of Arithmetica Uni-
versalis.
 4. Newton takes up this question in “De Gravitatione” and the famous 
Scholium to the defi nitions (see Stein 1967; Earman 1989; Rynasiewicz 1995; 
DiSalle 2006).
 5. Th e comparison between Barrow and Newton, which I return to 
 later in the chapter, is explored in much greater depth by Dunlop (2012a; 
2012b). See Guicciardini (2009, chapter 8) for a detailed contrast between 
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Barrow’s mathe matics and Newton’s fl uxional analy sis, and Mahoney (1990) 
and Stewart (2000) for further discussion of Barrow’s mathe matics.
 6. Hobbes defended a similar view, namely that the scientifi c status of 
mathe matics depended on the generation of geometrical magnitudes by 
motion, in an extended polemic with John Wallis, described with a clear 
account of the philosophy of mathe matics involved by Jesseph (1999). New-
ton studied De Corpore closely in his student years, but I am not aware of 
any evidence regarding his assessment of the Hobbes– Wallis exchange.
 7. Barrow was responding to debates regarding the scientifi c charac-
ter of mathematical demonstrations  going back to Piccolimini’s 1547 trea-
tise (see Mancosu 1996); considered in the context of  these debates, Barrow 
advocates an unorthodox account of formal causality.
 8. Guicciardini (2009) provides a masterful overview of Newton’s de-
velopment of the calculus, which draws on the manuscripts and Whiteside’s 
editorial apparatus in the MP; see also Smith (2005).
 9. For discussions of the mathematical style of the Principia and New-
ton’s reasons for adopting it, see Whiteside (1970); MP, 6; Mahoney (1993); 
and Guicciardini (2009, chapters 10–12).
 10. Smeenk and Schliesser (2013) give a more thorough treatment of 
the structure of the Principia along  these lines, which is particularly in-
debted to discussions of Newton’s methodology with George Smith and his 
publications on the topic (2001; 2002a; 2002b).
 11.  Th ere are two distinct prob lems: fi rst, given the orbit or trajectory, 
fi nd a force law suffi  cient to produce it, and, second, given the force law and 
initial position and velocity, determine the trajectory. It is not known pre-
cisely what prob lem Halley posed to Newton, but Newton’s response ad-
dresses the fi rst.
 12. Th is result appears in the Principia as Lemma 10, and the proof of 
the Lemma makes it clear that the proportionality only holds “ultimately” 
(or “in the limit” as the elapsed time goes to zero).
 13. Th e manuscript was extended in a series of revisions leading to the 
Principia; see Herivel (1965) and MP, 6. Two other questions would likely 
have been raised by Halley: how do  these ideas apply to the moon, with its 
apparently non- Keplerian motion, and to comets, which move through a 
much wider range of distances from the sun?
 14. Th e Principia’s fi rst two books consider the motions of body gener-
ally, that is  under a variety of diff  er ent force laws, moving in spaces without 
re sis tance (book 1) and with re sis tance of diff  er ent kinds (book 2). Book 3, 
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“Th e System of the World,” gives the argument for universal gravitation and 
further implications of gravity.
 15. Most of the results are restricted to forces varying as f ∝ rn, for in-
teger values of n, but several impor tant theorems also hold for rational val-
ues of n (e.g., prop. 1.45).
 16.  Here I draw on the discussion of mea sure ment given, in roughly 
this sense, by Harper (2011), in his defense of a Newtonian ideal of empirical 
success. Cf. Dunlop (2012b) for a diff  er ent take on mea sure ment, emphasizing 
connections with Barrow and the importance of judgments of congruence.
 17. Th is brief discussion of section  10 summarizes the conclusions of 
Smeenk and Smith (2012).
 18. Th e restriction to a uniformly dense spheroid is needed to ensure 
that gravity inside the spheroid varies directly with distance. Th is relation-
ship is formulated with regard to a specifi c physical situation. Th e Galilean 
theory does not approximate Newton’s theory in all cases, and the asymp-
totic limit is needed  because in Newton’s theory the case described by 
Galilean gravity only obtains in the limit and not in any physically realiz-
able case.
 19. Newton had proved that for a body moving on an elliptical trajec-
tory with the force directed at the center, the force varies directly with the 
distance. Yet for elliptical orbits that are nearly circular, as in the case of the 
planets, the two foci and the center are not far apart. As Smith (2002a) indi-
cates, an inference to an inverse- square force from Kepler’s fi rst law is not 
robust, in the sense that the conclusion does not follow if the antecedent only 
holds approximately.
 20. See Wilson (1989); Smith (2014, 262) for more detailed discussions 
of Newton’s contribution to celestial mechanics.
 21. For discussions of this argument, see Stein (1967); Earman (1989); 
Rynasiewicz (1995); DiSalle (2006).
 22. See Dunlop (2012a) for a sympathetic reconstruction of Barrow’s 
appeal to practice as a response to this question.
 23. See, in par tic u lar, McGuire (2007) for an assessment of Newton’s 
debt to, and contrasts with, Descartes, as well as Domski (2012), who draws 
in ter est ing parallels with Proclus’s neo- Platonic philosophy of mathe-
matics, and Stein (2002). See also Biener and Smeenk (2012) for a discussion 
of the account of body in DG parallel to this discussion of space.
 24. Newton prob ably had cases such as Torricelli’s trumpet in mind, 
which Barrow (1734) discussed in lecture 16 of his Mathematical Lectures.
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 25. Dated to the 1690s, and translated by McGuire (1978).
 26. But see Domski (2012) for the most persuasive and careful attempt 
at a coherent account.
 27.  Th ere is much more continuity in other aspects of Newton’s views that 
are not my focus  here, such as the infi nity of space and its relation to God.
 28. For further discussion, see, in par tic u lar, Stein (1991).
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